Electron interactions in graphene in a strong magnetic field

Mark O. Goerbig
Roderich Moessner
Benoit Douçot

12 June 2006, Utrecht University
cond-mat/0604554
Overview

- Recent experiments: integer QHE in graphene
- Graphene background
 - band structure; zero-energy states
- Continuum theory in the presence of a magnetic field
 - dispersion of Landau levels; length/energy scales
- Interactions and SU(4) (spin × chirality) symmetry
 - what’s special about $n = 0$
 - pseudopotentials and possible FQHE
 - easy-plane anisotropy due to ‘backscattering’ in $n \neq 0$
 - chirality ferromagnetism; effective stiffness
- Outlook
What is graphene?

- Graphene = 2D graphite
- Graphite = stack of weakly coupled graphene sheets
- Honeycomb lattice = triangular lattice with two-atom basis

Electron interactions in graphene in a strong magnetic field
What is graphene?

- Graphene = \textit{2D} graphite
- Graphite = stack of weakly coupled graphene sheets
- Honeycomb lattice = triangular lattice with two-atom basis

- Low-tech sample preparation: Scotch tape
- Technical difficulty: good contacts
IQHE in graphene

Density of states

Graphene IQHE:

\[R_H = \frac{h}{e^2 \nu} \]

at \(\nu = 2(2n+1) \)

Usual IQHE:

at \(\nu = 2n \)

(no Zeeman)

Figures

- **a**
 - **Density of states**
 - \(V_g = 15 \text{V} \)
 - \(T = 30 \text{mK} \)
 - \(R = \frac{1}{\nu} \)

- **b**
 - **Density of states**
 - \(B = 9 \text{T} \)
 - \(T = 1.6 \text{K} \)
 - \(\sim \nu \)

- **c**
 - **Graphene IQHE:**
 - \(R_H = \frac{h}{e^2 \nu} \)
 - at \(\nu = 2(2n+1) \)
Graphene bandstructure papers from the ’50ies

- Band-structure calculation in the tight-binding model

\[H_0 = -t \sum_{i \in A} \sum_{j=1}^{3} \left(b_{R_i+e_j}^\dagger a_{R_i} + \text{H.c.} \right) \]

Diagram showing the lattice structure with different interaction paths.
Graphene bandstructure papers from the ’50ies

- Band-structure calculation in the tight-binding model

\[H_0 = -t \sum_{i \in A} \sum_{j=1}^{3} \left(b_{R_i}^+ e_j a_{R_i} + \text{H.c.} \right) \]

Energy dispersion:

\[\epsilon_k = \pm t \sqrt{ \left(\sum_{j=1}^{3} \cos(k \cdot e_j) \right)^2 + \left(\sum_{j=1}^{3} \sin(k \cdot e_j) \right)^2 } \]
Zero-energy states

- Zero-energy states: $H|\psi\rangle = 0 \Rightarrow \sum_{j:i} b_{R_i+e_j} = 0$ or $\varepsilon_{K}^{\pm} = 0$
Zero-energy states

- Zero-energy states: \(H |\psi\rangle = 0 \Rightarrow \sum_{j:i} b_{R_i+e_j} = 0 \) or \(\varepsilon_{K}^{\pm} = 0 \)
- Can choose wavefunction amplitudes \(b_j = |b_j| \exp(i\phi_j) \) to be non-zero on \(B \) sublattice only

The page is discussing the zero-energy states in a triangular XY model. The states are characterized by global phase and chirality. The location of Dirac points at \(K \) is also mentioned.
Zero-energy states

- Zero-energy states: $H|\psi\rangle = 0 \implies \sum_{j:i} b_{R_i+e_j} = 0$ or $\varepsilon^{\pm}_K = 0$

- Can choose wavefunction amplitudes $b_j = |b_j| \exp(i\phi_j)$ to be non-zero on B sublattice only

- For $|b_j|$ constant, require $\sum_{j:i} \exp(i\phi_j) = 0 \mod 2\pi$
 \implies GS of triangular XY model

- These are distinguished by
 - global phase
 - chirality $= \pm \Leftrightarrow K, \ K'$
 \implies Location of Dirac points
Continuum limit with no magnetic field

- Zero-energy states:

\[\varepsilon_{K}^{\pm} = 0 \iff \sum_{j=1}^{3} \cos(K \cdot e_{j}) = \sum_{j=1}^{3} \sin(K \cdot e_{j}) = 0 \]

at \(K \) and \(K' \) points of the 1st BZ
Continuum limit with no magnetic field

- Zero-energy states:

\[\varepsilon_{\mathbf{K}}^{\pm} = 0 \Leftrightarrow \sum_{j=1}^{3} \cos(\mathbf{K} \cdot \mathbf{e}_j) = \sum_{j=1}^{3} \sin(\mathbf{K} \cdot \mathbf{e}_j) = 0 \]

at \(K \) and \(K' \) points of the 1st BZ

- Continuum limit \(\mathbf{k} = \mathbf{K}^{\pm} + \kappa \) with \(|\kappa| \ll 1/a \):

\[\mathcal{H}^{\pm}(\kappa) = \frac{3}{2} t a \begin{pmatrix} 0 & \kappa_1 \mp i\kappa_2 \\ \kappa_1 \pm i\kappa_2 & 0 \end{pmatrix} = \hbar v_F (\kappa_1 \sigma^1 \pm \kappa_2 \sigma^2) \]
Continuum limit with no magnetic field

- Zero-energy states:
 \[\varepsilon_{\mathbf{K}}^{\pm} = 0 \iff \sum_{j=1}^{3} \cos(\mathbf{K} \cdot \mathbf{e}_j) = \sum_{j=1}^{3} \sin(\mathbf{K} \cdot \mathbf{e}_j) = 0 \]
 at \(K \) and \(K' \) points of the 1st BZ

- Continuum limit \(\mathbf{k} = \mathbf{K}^{\pm} + \kappa \) with \(|\kappa| \ll 1/a \):
 \[\mathcal{H}^{\pm}(\kappa) = \frac{3}{2} t a \begin{pmatrix} 0 & \kappa_1 \mp i\kappa_2 \\ \kappa_1 \pm i\kappa_2 & 0 \end{pmatrix} = \hbar v_F (\kappa_1 \sigma^1 \pm \kappa_2 \sigma^2) \]

- Energy dispersion (two-fold degenerate, chirality \(\alpha = \pm \)):
 \[\varepsilon_{\kappa}^{\alpha = \pm} = \pm \hbar v_F |\kappa| \]
Research activity on graphene, 2005/06

- Disorder and interaction effects (Guinea et al.)
 - poor screening due to vanishing DOS at Dirac points
 - semimetal with different ferromagnetic phases
Research activity on graphene, 2005/06

- Disorder and interaction effects (Guinea et al.)
 - poor screening due to vanishing DOS at Dirac points
 - semimetal with different ferromagnetic phases
- Mesoscopic Physics
 - Edge (zig-zag vs. armchair) states in graphene nano-ribbons (Peres, Castro Neto, Guinea; Brey, Fertig; ...)
 - Minimal conductance $\sim e^2/h$ (Beenaker’s group, Katsnelson, ...)
 - Disorder and weak (anti-)localisation (Altshuler et al, Guinea et al., Khveshchenko, ...)

Electron interactions in graphene in a strong magnetic field

The "Castro Neto" program

"We'll have to rewrite the theory of metals for this problem."

(Physics Today, January 2006, p. 21)
Research activity on graphene, 2005/06

- **Disorder and interaction effects** (Guinea et al.)
 - poor screening due to vanishing DOS at Dirac points
 - semimetal with different ferromagnetic phases

- **Mesoscopic Physics**
 - Edge (zig-zag vs. armchair) states in graphene nano-ribbons (Peres, Castro Neto, Guinea; Brey, Fertig; ...)
 - Minimal conductance $\sim e^2/h$ (Beenaker’s group, Katsnelson, ...)
 - Disorder and weak (anti-)localisation (Altshuler et al, Guinea et al., Khvoshchenko, ...)

- **Graphene in a strong magnetic field**
Research activity on graphene, 2005/06

- **Disorder and interaction effects** (Guinea et al.)
 - poor screening due to vanishing DOS at Dirac points
 - semimetal with different ferromagnetic phases
- **Mesoscopic Physics**
 - Edge (zig-zag vs. armchair) states in graphene nano-ribbons (Peres, Castro Neto, Guinea; Brey, Fertig; ...)
 - Minimal conductance $\sim e^2/h$ (Beenaker’s group, Katsnelson, ...)
 - Disorder and weak (anti-)localisation (Altshuler et al, Guinea et al., Khvoshchenko, ...)
- **Graphene in a strong magnetic field**

 The “Castro Neto” program
 “We’ll have to rewrite the theory of metals for this problem.”
 (Physics Today, January 2006, p. 21)
“Naive” continuum limit with magnetic field (I)

- Peierls substitution + minimal coupling to the gauge field:

\[k \rightarrow \frac{p}{\hbar} \rightarrow \frac{1}{\hbar}(p + eA) \equiv \frac{\Pi}{\hbar} \]
“Naive” continuum limit with magnetic field (I)

- Peierls substitution + minimal coupling to the gauge field:

\[k \rightarrow \frac{p}{\hbar} \rightarrow \frac{1}{\hbar}(p + eA) \equiv \frac{\Pi}{\hbar} \]

Problem: \(A \) is unbound — \(e|A|/\hbar \gg 1/a \) inevitable!!

Electron interactions in graphene in a strong magnetic field – p.9/28
“Naive” continuum limit with magnetic field (I)

- Peierls substitution + minimal coupling to the gauge field:

\[k \rightarrow \frac{p}{\hbar} \rightarrow \frac{1}{\hbar}(p + eA) \equiv \frac{\Pi}{\hbar} \]

Problem: \(A \) is unbound — \(e|A|/\hbar \gg 1/a \) inevitable !!

- “Quantification” (magnetic length: \(l_B = \sqrt{\hbar/eB} \)):

\[[x_\mu, p_\nu] = i\hbar \delta_{\mu,\nu} \Rightarrow [\Pi_x, \Pi_y] = -i\hbar^2/l_B^2 \]
“Naive” continuum limit with magnetic field (I)

- Peierls substitution + minimal coupling to the gauge field:

\[\mathbf{k} \rightarrow \frac{\mathbf{p}}{\hbar} \rightarrow \frac{1}{\hbar} (\mathbf{p} + e \mathbf{A}) \equiv \frac{\Pi}{\hbar} \]

Problem: \(\mathbf{A} \) is unbound — \(e |\mathbf{A}|/\hbar \gg 1/a \) inevitable !!

- “Quantification” (magnetic length: \(l_B = \sqrt{\hbar/eB} \)):

\[
[x_\mu, p_\nu] = i \hbar \delta_{\mu, \nu} \Rightarrow [\Pi_x, \Pi_y] = -i \hbar^2 / l_B^2
\]

- Ladder operators \([a, a^\dagger] = 1\) (harmonic oscillator):

\[
a = \frac{l_B}{\sqrt{2\hbar}} (\Pi_y + i \Pi_x), \quad a^\dagger = \frac{l_B}{\sqrt{2\hbar}} (\Pi_y - i \Pi_x)
\]
“Naive” continuum limit with magnetic field (II)

- Hamiltonians for the two chiralities (at K and K'):

\[
H_K = \sqrt{2} \frac{\hbar v_F}{l_B} \begin{pmatrix} 0 & a^\dagger \\ a & 0 \end{pmatrix}, \quad H_{K'} = \sqrt{2} \frac{\hbar v_F}{l_B} \begin{pmatrix} 0 & a \\ a^\dagger & 0 \end{pmatrix}
\]
“Naive” continuum limit with magnetic field (II)

- Hamiltonians for the two chiralities (at K and K'):

$$H_K = \sqrt{2} \frac{\hbar v_F}{l_B} \begin{pmatrix} 0 & a^\dagger \\ a & 0 \end{pmatrix}, \quad H_{K'} = \sqrt{2} \frac{\hbar v_F}{l_B} \begin{pmatrix} 0 & a \\ a^\dagger & 0 \end{pmatrix}$$

- Energy dispersion (degenerate in chirality quantum number α):

$$\epsilon_n = \pm \frac{\hbar v_F}{l_B} \sqrt{n} \propto \sqrt{B|n|}$$

[Relativistic Landau levels (LLs)]
Quantum states and degeneracies

- Degeneracy of relativistic LLs:
 - Symmetry due to guiding centers $\mathbf{R} = (X, Y)$:
 $[H, \mathbf{R}] = 0$, $[X, Y] = il_B^2$, states: $|n, m\rangle = |n\rangle \otimes |m\rangle$
 - “usual” orbital degeneracy: $N_\phi = A/2\pi l_B^2$
 - filling factor: $\nu = N_{el}/N_\phi$
Quantum states and degeneracies

- Degeneracy of relativistic LLs:
 - Symmetry due to guiding centers $\mathbf{R} = (X, Y)$:
 \[
 [H, \mathbf{R}] = 0, \quad [X, Y] = il_B^2, \quad \text{states: } |n, m\rangle = |n\rangle \otimes |m\rangle
 \]
 - “usual” orbital degeneracy: $N_\phi = A/2\pi l_B^2$
 - Filling factor: $\nu = N_{el}/N_\phi$
 - Chirality $\alpha = \pm$ and spin $\sigma = \uparrow, \downarrow$ (evtl. lifted by Zeeman)
 \[
 \Rightarrow \text{internal SU(4) symmetry}
 \]
Quantum states and degeneracies

- Degeneracy of relativistic LLs:
 - Symmetry due to guiding centers \(\mathbf{R} = (X, Y) \):
 \[
 [H, \mathbf{R}] = 0, \quad [X, Y] = il_B^2, \quad \text{states: } |n, m\rangle = |n\rangle \otimes |m\rangle
 \]
 - “usual” orbital degeneracy: \(N_\phi = A/2\pi l_B^2 \)
 - Chirality \(\alpha = \pm \) and spin \(\sigma = \uparrow, \downarrow \) (evtl. lifted by Zeeman)
 \(\Rightarrow \) internal SU(4) symmetry

- States \(|n, m; \alpha\rangle \) are 2-spinors:
 \[
 |n, m; +\rangle = \begin{pmatrix}
 |n, m\rangle \\
 \text{sgn}(n)|n - 1, m\rangle
 \end{pmatrix},
 |n, m; -\rangle = \begin{pmatrix}
 \text{sgn}(n)|n - 1, m\rangle \\
 |n, m\rangle
 \end{pmatrix}
 \]

- Special case \(n = 0 \):
 electrons at \(K (K') \) live on \(A (B) \) sublattice only!
Infrared transmission spectroscopy

Grenoble high-field group: Sadowski et al., cond-mat/0605739

Transition C

\[
\text{transmission energy [meV]} = 100 \times \sqrt{B} - 50
\]

\[
\text{relative transmission}
\]

Transition B

\[
\text{transmission energy [meV]} = 50 \times \sqrt{B} - 20
\]

\[
\text{relative transmission}
\]

Electron interactions in graphene in a strong magnetic field
“Correct” continuum limit – Harper equation

- Define wavefunctions $g_{\{A/B\}}$ for sublattices A/B

Near K (in units of $a \equiv 1$):

$$E_{g_A}(x) = -2 \cos \left\{ \frac{2\pi}{3} + \frac{\sqrt{3}}{2} \left[q_y + (x + 1/4)B \right] \right\} g_B(x + 1/2) - g_B(x - 1)$$

$$E_{g_B}(x) = -2 \cos \left\{ \frac{2\pi}{3} + \frac{\sqrt{3}}{2} \left[q_y + (x - 1/4)B \right] \right\} g_A(x - 1/2) - g_A(x + 1)$$

- In Landau gauge $A = Bxe_y$, q_y is good quantum number
“Correct” continuum limit – Harper equation

- Define wavefunctions $g_{\{A/B\}}$ for sublattices A/B

 Near K (in units of $a \equiv 1$):
 \[
 E_gA(x) = -2 \cos \left\{ \frac{2\pi}{3} + \frac{\sqrt{3}}{2} [q_y + (x + 1/4)B] \right\} g_B(x + 1/2) - g_B(x - 1) \\
 E_gB(x) = -2 \cos \left\{ \frac{2\pi}{3} + \frac{\sqrt{3}}{2} [q_y + (x - 1/4)B] \right\} g_A(x - 1/2) - g_A(x + 1)
 \]

- In Landau gauge $A = B x e_y$, q_y is good quantum number

- Problem for expansion: $B x$ is unbounded

\Rightarrow For given $q_y \in [0, 2\pi]$, define auxiliary q.n. m such that
 \[
 \sqrt{3}/2(q_y + B x_m) = 2\pi m \quad \text{and write} \quad x = x_m + \delta x
 \]
“Correct” continuum limit – Harper equation

• Define wavefunctions \(g_{\{A/B\}} \) for sublattices \(A/B \)

Near \(K \) (in units of \(a \equiv 1 \)):

\[
E_{g_A}(x) = -2 \cos \left\{ 2\pi/3 + \frac{\sqrt{3}}{2} [q_y + (x + 1/4)B] \right\} g_B(x + 1/2) - g_B(x - 1)
\]

\[
E_{g_B}(x) = -2 \cos \left\{ 2\pi/3 + \frac{\sqrt{3}}{2} [q_y + (x - 1/4)B] \right\} g_A(x - 1/2) - g_A(x + 1)
\]

• In Landau gauge \(A = Bxe_y \), \(q_y \) is good quantum number

• Problem for expansion: \(Bx \) is unbounded

\(\Rightarrow \) For given \(q_y \in [0, 2\pi[, \) define auxiliary q.n. \(m \) such that

\[
\sqrt{3}/2(q_y + Bx_m) = 2\pi m
\]

and write \(x = x_m + \delta x \)

• Strategy

 - solve for given \(m, q_y \) assuming \(\delta x \) small
 - Check consistency of solution with assumption
From Harper to Dirac

- Expansion near K, K' gives Dirac equation:

$$
E g_{\alpha}(x) = -\frac{3}{2} \left(\frac{d}{dx} \pm B \delta x \right) g_{\beta}(x)
$$

$$
E g_{\beta}(x) = -\frac{3}{2} \left(-\frac{d}{dx} \pm B \delta x \right) g_{\alpha}(x)
$$
From Harper to Dirac

- Expansion near K, K' gives Dirac equation:
 \[
 E g_\alpha(x) = -\frac{3}{2}(d/dx \pm B\delta x)g_\beta(x) \\
 E g_\beta(x) = -\frac{3}{2}(-d/dx \pm B\delta x)g_\alpha(x)
 \]

- Tunnelling between solutions $m \neq m'$ suppressed?
 \[\Rightarrow\] Require: $R_L = \sqrt{n l_B} \sim \sqrt{n/B} \ll 1/B \sim \Delta x_n$

Electron interactions in graphene in a strong magnetic field – p.14/28
From Harper to Dirac

• Expansion near K, K' gives Dirac equation:
 \[Eg_\alpha(x) = -3/2(d/dx \pm B\delta x)g_\beta(x) \]
 \[Eg_\beta(x) = -3/2(-d/dx \pm B\delta x)g_\alpha(x) \]

• Tunnelling between solutions $m \neq m'$ suppressed?

⇒ Require: $R_L = \sqrt{nl_B} \sim \sqrt{n/B} \ll 1/B \sim \Delta x_n$

• Equivalent to $E \ll t$ and $\rho \ll 1/a^2 \sim 10^{15} \text{cm}^{-2}$
Length and energy scales in graphene

Length scales
- Distance between neighbouring carbon atoms: $a = 0.14\text{nm}$
- Magnetic length: $l_B = 26\text{nm}/\sqrt{B[T]}$
- Larmor radius: $R_L = \sqrt{n}l_B$

Energy scales
- Band width: $t = 2.7\text{eV}$
- Lattice effects (anisotropies, etc.): $a = l_B = 0.005\text{nm}/\sqrt{B[T]}$
- Landau level `spacing': $\sim v_F = l_B = 3\tau = 20\text{meV}$
- Landau level dispersion (tunneling): $\exp(-RL = a)$
- Zeeman splitting: $\Delta = g\mu_B B = 0.1\text{meV}$
- Interaction energy: $e^2 = l_B = 2.4\cdots 12\text{meV}$
Length and energy scales in graphene

Length scales
- Distance between neighbouring carbon atoms: $a = 0.14\text{nm}$
- Magnetic length: $l_B = 26\text{nm}/\sqrt{B[\text{T}]}$
- Larmor radius: $R_L = \sqrt{n}l_B$

Energy scales
- Band width: $t = 2.7\text{eV}$
- Lattice effects (anisotropies, etc.): $a/l_B \sim 0.005\sqrt{B[\text{T}]}$
- Landau level ‘spacing’: $\hbar v_F/l_B = 3ta/2l_B \sim 20\sqrt{B[\text{T}]}	ext{meV}$
- Landau level dispersion (tunneling): $\exp(-R_L/a)$
Length and energy scales in graphene

Length scales
- Distance between neighbouring carbon atoms: \(a = 0.14 \text{nm} \)
- Magnetic length: \(l_B = \frac{26 \text{nm}}{\sqrt{B \text{[T]}}} \)
- Larmor radius: \(R_L = \sqrt{nl_B} \)

Energy scales
- Band width: \(t = 2.7 \text{eV} \)
- Lattice effects (anisotropies, etc.): \(a/l_B \sim 0.005 \sqrt{B \text{[T]}} \)
- Landau level ‘spacing’: \(\hbar v_F/l_B = \frac{3ta}{2l_B} \sim 20 \sqrt{B \text{[T]}} \text{meV} \)
- Landau level dispersion (tunneling): \(\exp(-R_L/a) \)
- Zeeman splitting: \(\Delta_z = g\mu_B B \sim 0.1B \text{[T]} \text{meV} \)
- Interaction energy: \(e^2/\epsilon l_B \sim 2.4...12 \sqrt{B \text{[T]}} \text{meV} \)
Interaction model – densities

- Electrons in a single relativistic LL at $\nu \neq n$ (no spin):

$$H = \frac{1}{2} \sum_{q} V(q) \rho_{n}^{n}(-q) \rho_{n}^{n}(q), \quad V(q) = \frac{2\pi e^{2}}{\epsilon q}$$

$$\rho_{n}^{n}(q) = \rho_{A}^{n}(q) + \rho_{B}^{n}(q)$$

$$\rho_{\tau}^{n}(r) = \sum_{\alpha, \alpha'} \psi_{n;\alpha;\tau}^{\dagger}(r) \psi_{n;\alpha';\tau}(r)$$

with $\tau = A/B$, $\alpha = \pm$ (chirality)
Interaction model – densities

• Electrons in a single relativistic LL at \(\nu \neq n \) (no spin):

\[
H = \frac{1}{2} \sum_{\mathbf{q}} V(q) \rho_n(-\mathbf{q}) \rho_n(\mathbf{q}), \quad V(q) = \frac{2\pi e^2}{\varepsilon q}
\]

\[
\rho^n(\mathbf{q}) = \rho^n_A(\mathbf{q}) + \rho^n_B(\mathbf{q})
\]

\[
\rho^n_{\tau}(\mathbf{r}) = \sum_{\alpha, \alpha'} \psi_{n;\alpha;\tau}^\dagger(\mathbf{r}) \psi_{n;\alpha';\tau}(\mathbf{r})
\]

with \(\tau = A/B \), \(\alpha = \pm \) (chirality)

• Projected densities \(\rho^n(\mathbf{q}) = \sum_{\alpha, \alpha'} F_{n}^{\alpha\alpha'}(\mathbf{q}) \bar{\rho}^{\alpha\alpha'}(\mathbf{q}) \):

\[
\bar{\rho}^{\alpha\alpha'}(\mathbf{q}) = \sum_{m, m'} \langle m | e^{-i[\mathbf{q}+(\alpha-\alpha')\mathbf{K}] \cdot \mathbf{R}} | m' \rangle c_{n, m, \alpha}^\dagger c_{n, m', \alpha'}
\]
Graphene form factors $l_B \equiv 1$:

\[
F_{n}^{++}(q) = \frac{1}{2} \left[L_{|n|} \left(\frac{|q|^2}{2} \right) + L_{|n|-1} \left(\frac{|q|^2}{2} \right) \right] e^{-|q|^2/4} = F_{n}^{--}(q) \equiv F_{n}(q)
\]

\[
F_{n}^{+-}(q) = \left(\frac{-i(q + q^* - K - K^*)}{2\sqrt{2|n|}} \right) L_{|n|-1}^{1} \left(\frac{|q - K|^2}{2} \right) e^{-|q-K|^2/4}
\]

\[
F_{n}^{-+}(q) = [F_{n}^{+-}(-q)]^*
\]
Interaction model (II)

- Graphene form factors $l_B \equiv 1$:

$$
F_{n}^{++}(q) = \frac{1}{2} \left[L_{|n|} \left(\frac{|q|^2}{2} \right) + L_{|n|-1} \left(\frac{|q|^2}{2} \right) \right] e^{-|q|^2/4} = F_{n}^{--}(q) \equiv F_n(q)
$$

$$
F_{n}^{+-}(q) = \left(\frac{-i(q + q^* - K - K^*)}{2\sqrt{2}|n|} \right) L_{|n|-1}^{1} \left(\frac{|q - K|^2}{2} \right) e^{-|q-K|^2/4}
$$

$$
F_{n}^{-+}(q) = \left[F_{n}^{+-}(-q) \right]^*
$$

- Model: $H = \frac{1}{2} \sum_{\alpha_1, \ldots, \alpha_4} \sum_q \psi_{n}^{\alpha_1, \ldots, \alpha_4}(q) \bar{\rho}^{\alpha_1 \alpha_3}(-q) \bar{\rho}^{\alpha_2 \alpha_4}(q)$

with interaction vertex:

$$
\psi_{n}^{\alpha_1, \ldots, \alpha_4}(q) = \frac{2\pi e^2}{\epsilon |q|} F_{n}^{\alpha_1 \alpha_3}(-q) F_{n}^{\alpha_2 \alpha_4}(q),
$$
Interaction model (II)

- Graphene form factors \(l_B \equiv 1 \):

\[
F_{n}^{++}(q) = \frac{1}{2} \left[L_{|n|} \left(\frac{|q|^2}{2} \right) + L_{|n|-1} \left(\frac{|q|^2}{2} \right) \right] e^{-|q|^2/4} = F_{n}^{--}(q) \equiv \mathcal{F}_n(q)
\]

\[
F_{n}^{+-}(q) = \left(\frac{-i(q + q^* - K - K^*)}{2\sqrt{2|n|}} \right) L_{|n|-1}^1 \left(\frac{|q - K|^2}{2} \right) e^{-|q-K|^2/4}
\]

\[
F_{n}^{-+}(q) = [F_{n}^{+-}(-q)]^*
\]

- Model: \(H = \frac{1}{2} \sum_{\alpha_1, \ldots, \alpha_4} \sum_{q} v_n^{\alpha_1, \ldots, \alpha_4}(q) \bar{\rho}^{\alpha_1 \alpha_3}(-q) \bar{\rho}^{\alpha_2 \alpha_4}(q) \)

with interaction vertex:

\[
v_n^{\alpha_1, \ldots, \alpha_4}(q) = \frac{2\pi e^2}{\epsilon |q|} F_{n}^{\alpha_1 \alpha_3}(q) F_{n}^{\alpha_2 \alpha_4}(q),
\]

\(\Rightarrow \) No SU(2) chirality symmetry so far !!
Scattering Processes

- Terms of the form
 \[F_{n,\alpha}(\pm q)F_{n'}^{-\alpha}(\pm q) : \]
 \[\text{exp. suppressed} \sim \exp(-|K|/8) \]
Scattering Processes

- Terms of the form
 \[F_n^{\alpha,\alpha}(\mp q)F_n^{\alpha',-\alpha'}(\pm q) : \]
 exp. suppressed \(\sim \exp(-|K|/8) \)

- Umklapp terms
 \[F_n^{\alpha,-\alpha}(-q)F_n^{\alpha,-\alpha}(q) : \]
 exp. suppressed \(\sim \exp(-|K|/2) \)
Scattering Processes

- Terms of the form \(F_{n}^{\alpha,\alpha}(\mp q)F_{n}^{\alpha',-\alpha'}(\pm q) \):
 \[\text{exp. suppressed} \sim \exp(-|K|/8) \]

- Umklapp terms
 \(F_{n}^{\alpha,-\alpha}(-q)F_{n}^{\alpha,-\alpha}(q) \):
 \[\text{exp. suppressed} \sim \exp(-|K|/2) \]

- Backscattering terms
 \(F_{n}^{\alpha,-\alpha}(-q)F_{n}^{-\alpha,\alpha}(q) \):
 \[\text{alg. small} \sim 1/|K| \sim a/l_B \]
Scattering Processes

- Terms of the form $F_{n}^{\alpha,\alpha}(\mp q)F_{n}^{\alpha',-\alpha'}(\pm q)$:
 \[\exp.\text{ suppressed } \sim \exp(-|K|/8)\]

- Umklapp terms $F_{n}^{\alpha,-\alpha}(-q)F_{n}^{\alpha,-\alpha}(q)$:
 \[\exp.\text{ suppressed } \sim \exp(-|K|/2)\]

- Backscattering terms $F_{n}^{\alpha,-\alpha}(-q)F_{n}^{-\alpha,\alpha}(q)$:
 \[\text{alg. small } \sim 1/|K| \sim a/l_{B}\]

\[\Rightarrow H_{SU(2)}^{n} = \frac{1}{2} \sum_{\alpha,\alpha'} \sum_{\mathbf{q}} \frac{2\pi e^{2}}{\epsilon|\mathbf{q}|} [\mathcal{F}_{n}(\mathbf{q})]^{2} \rho^{\alpha,\alpha}(-\mathbf{q})\rho^{\alpha',\alpha'}(\mathbf{q}) + \mathcal{O}(a/l_{B})\]
SU(2) Model

- SU(2) Interaction Hamiltonian:

\[H_{SU(2)}^n = \frac{1}{2} \sum_q v_n^G(q) \bar{\rho}(-q) \bar{\rho}(q) \]

with total projected density \(\bar{\rho}(q) = \bar{\rho}^{++}(q) + \bar{\rho}^{--}(q) \)

and effective interaction potential for graphene:

\[v_n^G(q) = \frac{\pi e^2}{\epsilon q} e^{-q^2/2} \left[L_{|n|} \left(\frac{q^2}{2} \right) + L_{|n|-1} \left(\frac{q^2}{2} \right) \right]^2, \quad v_0^G(q) = \frac{2\pi e^2}{\epsilon q} e^{-q^2/2} \]
SU(2) Model

- SU(2) Interaction Hamiltonian:

 \[H_{SU(2)}^n = \frac{1}{2} \sum_q v^G_n(q) \bar{\rho}(-q) \bar{\rho}(q) \]

 with total projected density \(\bar{\rho}(q) = \bar{\rho}^{++}(q) + \bar{\rho}^{--}(q) \)

 and effective interaction potential for graphene:

 \[v^G_{n \neq 0}(q) = \frac{\pi e^2}{\epsilon q} e^{-q^2/2} \left[L_{|n|} \left(\frac{q^2}{2} \right) + L_{|n|-1} \left(\frac{q^2}{2} \right) \right]^2, \quad v^G_{0}(q) = \frac{2\pi e^2}{\epsilon q} e^{-q^2/2} \]

- Magnetic translation algebra for projected densities:

 \[[\bar{\rho}(q), \bar{\rho}(q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \bar{\rho}(q + q') \]
SU(2) Model

- SU(2) Interaction Hamiltonian:

\[H^n_{SU(2)} = \frac{1}{2} \sum_q v^n_G(q) \tilde{\rho}(-q) \tilde{\rho}(q) \]

with total projected density \(\tilde{\rho}(q) = \tilde{\rho}^{++}(q) + \tilde{\rho}^{--}(q) \)

and effective interaction potential for graphene:

\[v^n_G(q) = \frac{\pi e^2}{\epsilon q} e^{-q^2/2} \left[L_{|n|} \left(\frac{q^2}{2} \right) + L_{|n|-1} \left(\frac{q^2}{2} \right) \right]^2, \quad v^n_G(q) = \frac{2\pi e^2}{\epsilon q} e^{-q^2/2} \]

- Magnetic translation algebra for projected densities:

\[[\tilde{\rho}(q), \tilde{\rho}(q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \tilde{\rho}(q + q') \]

- Non-relativistic limit \(n \gg 1 \):

\[\mathcal{F}_n(q) \approx \frac{1}{2} \left[J_0(q\sqrt{2n} - 1) + J_0(q\sqrt{2n} + 1) \right] \approx J_0(q\sqrt{2n}) \approx L_n \left(\frac{q^2}{2} \right) e^{-q^2/4} + O(1/n) \]
Effective SU(2) interaction potentials – FQHE

The effective interaction potential in the non-relativistic and relativistic cases for different values of n. The behavior of the potential is most stable for $n=1$ without non-relativistic effects.

- $n=0$: Relativistic and non-relativistic
- $n=1$: Relativistic
- $n=5$: Non-relativistic

Largest difference between relativistic and non-relativistic cases is for $n=1$. Similar behavior for $n=0$ and $n=1$: "chirality polarized" FQHE states are most stable in the absence of non-relativistic effects.
• Largest difference between rel. and non-rel. case in \(n = 1 \)
• Similar behaviour of rel. interaction in \(n = 0 \) and \(n = 1 \):
Effective SU(2) interaction potentials – FQHE

- Largest difference between rel. and non-rel. case in $n = 1$
- Similar behaviour of rel. interaction in $n = 0$ and $n = 1$:
 - “chirality polarised” FQHE states most stable in $n = 1$
• Largest difference between rel. and non-rel. case in $n = 1$

• Similar behaviour of rel. interaction in $n = 0$ and $n = 1$:
 - “chirality polarised” FQHE states most stable in $n = 1$
 - absence of non-rel. $n = 1$ physics: Pfaffian at $\nu = 5/2$?
SU(2) symmetry-breaking terms of \(\mathcal{O}(\alpha/l_B) \)

- Backscattering terms in \(n \neq 0 \):

\[
H_{bs} = \frac{1}{2} \sum_{\alpha} \sum_{\mathbf{q}} v_{n}^{\alpha,-\alpha}(\mathbf{q}) \bar{\rho}_{\alpha,-\alpha}(-\mathbf{q}) \rho_{-\alpha,\alpha}(\mathbf{q})
\]

with interaction \(v_{n}^{+-}(\mathbf{q}) = v_{n}^{-+}(-\mathbf{q}) \)

\[
v_{n}^{+-}(\mathbf{q}) = \frac{\pi e^2 \text{Re}(\mathbf{q} - \mathbf{K})^2}{\epsilon |\mathbf{q}|} \left[L_{|n|-1}^1 \left(\frac{|\mathbf{q} - \mathbf{K}|^2}{2} \right) e^{-|\mathbf{q} - \mathbf{K}|^2/4} \right]^2
\]

peaked at \(\mathbf{q} = \pm \mathbf{K} \): \(v_{n}^{+-}(q) \sim e^2/\epsilon |\mathbf{K}| l_B^2 \sim (e^2/\epsilon l_B)(\alpha/l_B) \)
SU(2) symmetry-breaking terms of $\mathcal{O}(\alpha/l_B)$

- Backscattering terms in $n \neq 0$:

$$H_{bs} = \frac{1}{2} \sum_{\alpha} \sum_{\mathbf{q}} v_{n}^{\alpha,-\alpha}(\mathbf{q}) \bar{\rho}^{\alpha,-\alpha}(\mathbf{-q}) \rho^{\alpha,\alpha}(\mathbf{q})$$

with interaction $v_{n}^{+-}(\mathbf{q}) = v_{n}^{-+}(\mathbf{-q})$

$$v_{n}^{+-}(\mathbf{q}) = \frac{\pi e^2 \text{Re}(\mathbf{q} - \mathbf{K})^2}{\epsilon|\mathbf{q}|} \left[L^1_{|n|-1} \left(\left| \frac{\mathbf{q} - \mathbf{K}}{2} \right| \right) e^{-|\mathbf{q-K}|^2/4} \right]^2$$

peaked at $\mathbf{q} = \pm \mathbf{K}$: $v_{n}^{+-}(\mathbf{q}) \sim e^2/\epsilon |\mathbf{K}| l_B^2 \sim (e^2/\epsilon l_B)(\alpha/l_B)$

- Electrostatics in $n = 0$:
 charge distributed homogeneously on both sublattices
 \Rightarrow easy-plane anisotropy $SU(2) \rightarrow U(1)$
Chirality quantum ferromagnetism

- Exchange-driven spin ferromagnetism at $\nu = 1$ in GaAs
Chirality quantum ferromagnetism

- Exchange-driven spin ferromagnetism at $\nu = 1$ in GaAs
- SU(2) vs. O(3) description [Review: Moon et al., PRB 51, 5138 (1995)]

$$|\Psi\rangle = \prod_m \left(\sin \frac{\theta_m}{2} e^{-i \phi_m / 2} c_{m,+}^\dagger + \cos \frac{\theta_m}{2} e^{i \phi_m / 2} c_{m,-}^\dagger \right) |0\rangle \leftrightarrow n_m = \begin{pmatrix} \sin \theta_m \cos \phi_m \\ \sin \theta_m \sin \phi_m \\ \cos \theta_m \end{pmatrix}$$
Chirality quantum ferromagnetism

- Exchange-driven spin ferromagnetism at $\nu = 1$ in GaAs
- $\text{SU}(2)$ vs. $\text{O}(3)$ description [Review: Moon et al., PRB 51, 5138 (1995)]

$$|\Psi\rangle = \prod_m \left(\sin \frac{\theta_m}{2} e^{-i\phi_m/2} c^\dagger_{m,+} + \cos \frac{\theta_m}{2} e^{i\phi_m/2} c^\dagger_{m,-} \right) |0\rangle \leftrightarrow n_m = \begin{pmatrix} \sin \theta_m \cos \phi_m \\ \sin \theta_m \sin \phi_m \\ \cos \theta_m \end{pmatrix}$$

- Non-linear σ model (in coherent states: $m \sim r$):

$$\mathcal{H} = \frac{\rho_s}{2} \int d^2r [\nabla n(r)]^2 \quad \rho_s = \frac{1}{16\sqrt{2\pi}} \frac{e^2}{\epsilon l_B}$$
Chirality quantum ferromagnetism

- Exchange-driven spin ferromagnetism at $\nu = 1$ in GaAs
- SU(2) vs. O(3) description [Review: Moon et al., PRB 51, 5138 (1995)]

$$|\Psi\rangle = \prod_{m} \left(\sin \frac{\theta_m}{2} e^{-i\phi_m/2} c^\dagger_{m,+} + \cos \frac{\theta_m}{2} e^{i\phi_m/2} c^\dagger_{m,-} \right) |0\rangle \leftrightarrow n_m = \begin{pmatrix} \sin \theta_m \cos \phi_m \\ \sin \theta_m \sin \phi_m \\ \cos \theta_m \end{pmatrix}$$

- Non-linear σ model (in coherent states: $m \sim r$):

$$\mathcal{H} = \frac{\rho_s}{2} \int d^2r [\nabla n(r)]^2 \quad \rho_s = \frac{1}{16\sqrt{2\pi}} \frac{e^2}{\ell_B}$$

- Easy-plane anisotropy due to backscattering terms in $n \neq 0$:

$$\mathcal{H}_{\text{mass}} = \Delta_z \int \frac{d^2r}{2\pi\ell_B} [n_z(r)]^2 \quad \Delta_z = \frac{3\sqrt{3}}{64\pi^3} \frac{e^2}{\ell_B^2} \frac{a}{l_B}$$
Experimental evidence for chirality coherence

Zhang et al. PRL 96, 236806 (2006)

- IQHE in graphene:
 \[\sigma_{xy} = \frac{2e^2}{h}(2n + 1) \]
 at \(\nu = 2(2n + 1) \)

- New states at \(\nu = 0, \pm 1, \pm 4 \)

Experimental evidence for chirality coherence

Zhang et al. PRL 96, 236806 (2006)

- IQHE in graphene:
 \[\sigma_{xy} = \frac{2e^2}{h}(2n + 1) \]
 at \(\nu = 2(2n + 1) \)

- New states at \(\nu = 0, \pm 1, \pm 4 \)

- States at \(\nu = 0, \pm 4 \): spin splitting
Experimental evidence for chirality coherence

Zhang et al. PRL 96, 236806 (2006)

- IQHE in graphene:
 \[\sigma_{xy} = \frac{2e^2}{h}(2n + 1) \]
 at \(\nu = 2(2n + 1) \)

- New states at \(\nu = 0, \pm 1, \pm 4 \)

- States at \(\nu = 0, \pm 4 \): spin splitting

- States at \(\nu = \pm 1 \): chirality symmetry breaking
Outlook: From SU(2) to SU(4) in a fixed LL (I)

- Theoretical limit of vanishing Zeeman splitting: chiral SU(2) symmetry \times spin SU(2) symmetry
Outlook: From SU(2) to SU(4) in a fixed LL (I)

- Theoretical limit of vanishing Zeeman splitting: chiral SU(2) symmetry × spin SU(2) symmetry
- Generators of SU(2) symmetry: projected spin densities

\[
\bar{S}^\mu(q) = \bar{\rho}(q) \otimes S^\mu = \frac{1}{2} \sum_{m,m;\sigma,\sigma'} \langle m | e^{-i\mathbf{q} \cdot \mathbf{R}} | m' \rangle c^\dagger_{m;\sigma} \tau^\mu_{\sigma,\sigma'} c_{m';\sigma'}
\]

\[
[\bar{S}^\mu(q), \bar{\rho}(q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \bar{S}^\mu(q + q')
\]

\[
[\bar{S}^\mu(q), \bar{S}^\nu(q')] = \frac{i}{2} \delta^{\mu\nu} \sin \left(\frac{q \wedge q'}{2} \right) \bar{\rho}(q + q') + i\epsilon^{\mu\nu\sigma} \cos \left(\frac{q \wedge q'}{2} \right) \bar{S}^\sigma(q + q')
\]
Outlook: From SU(2) to SU(4) in a fixed LL (I)

- Theoretical limit of vanishing Zeeman splitting: chiral SU(2) symmetry \times spin SU(2) symmetry

- Generators of SU(2) symmetry: projected spin densities

$$
\tilde{S}^\mu(q) = \bar{\rho}(q) \otimes S^\mu = \frac{1}{2} \sum_{m,m';\sigma,\sigma'} \langle m | e^{-i q \cdot R} | m' \rangle c^\dagger_{m;\sigma} \tau^\mu_{\sigma,\sigma'} c_{m';\sigma'}
$$

$$
[\tilde{S}^\mu(q), \bar{\rho}(q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \tilde{S}^\mu(q + q')
$$

$$
[\tilde{S}^\mu(q), \tilde{S}^\nu(q')] = \frac{i}{2} \delta^{\mu\nu} \sin \left(\frac{q \wedge q'}{2} \right) \bar{\rho}(q + q') + i \epsilon^{\mu\nu\sigma} \cos \left(\frac{q \wedge q'}{2} \right) \tilde{S}^\sigma(q + q')
$$

- Additional SU(2) symmetry – SU(2)\otimesSU(2):

$$
\tilde{S}^\mu(q) = \bar{\rho}(q) \otimes (S^\mu \otimes 1) \quad \tilde{I}^\nu(q) = \bar{\rho}(q) \otimes (1 \otimes \tilde{I}^\nu)
$$
Outlook: From SU(2) to SU(4) in a fixed LL (II)

- Other generators of SU(4) obtained from commutators:

\[
[\tilde{S}^\mu (q), \tilde{I}^\nu (q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \tilde{\rho} (q + q') \otimes (S^\mu \otimes I^\nu),
\]

⇒ SU(4) extension of magnetic translation algebra

[Ezawa, PRB 67, 125314 (2003); Tsitsishvili and Ezawa, PRB 70,125304 (2004)]
Outlook: From SU(2) to SU(4) in a fixed LL (II)

- Other generators of SU(4) obtained from commutators:

\[
[\tilde{S}^\mu(q), \tilde{I}^\nu(q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \tilde{\rho}(q + q') \otimes (S^\mu \otimes I^\nu),
\]

⇒ SU(4) extension of magnetic translation algebra

[Ezawa, PRB 67, 125314 (2003); Tsitsishvili and Ezawa, PRB 70, 125304 (2004)]

- Necessary spin-chirality entanglement in model
 (c.f. spin-charge entanglement in SU(2) extension)
Outlook: From SU(2) to SU(4) in a fixed LL (II)

- Other generators of SU(4) obtained from commutators:

\[
[S^\mu (q), I^\nu (q')] = 2i \sin \left(\frac{q \wedge q'}{2} \right) \bar{\rho} (q + q') \otimes (S^\mu \otimes I^\nu),
\]

⇒ SU(4) extension of magnetic translation algebra
[Ezawa, PRB 67, 125314 (2003); Tsitsishvili and Ezawa, PRB 70, 125304 (2004)]

- Necessary spin-chirality entanglement in model
 (c.f. spin-charge entanglement in SU(2) extension)

- SU(4) skyrmion physics at \(\nu = 1 \)
 [Arovas et al., PRB 59, 13147 (1999); Ezawa, PRL 82, 3512 (1999)]
Comparison with bilayer quantum Hall systems

- Layer index \rightarrow isospin $\alpha = \pm$ (in addition to physical spin)
- Explicit isospin SU(2) symmetry breaking due to different intralayer and interlayer interactions:

$$H_{bs} = 2 \sum_{q} v_{sb}(q) \bar{S}^z(-q) \bar{S}^z(q)$$

\Rightarrow Favours $\langle \bar{S}^z(q) \rangle = 0$
Comparison with bilayer quantum Hall systems

- Layer index \(\rightarrow \) isospin \(\alpha = \pm \) (in addition to physical spin)

- Explicit isospin SU(2) symmetry breaking due to different intralayer and interlayer interactions:

\[
H_{bs} = 2 \sum_{\mathbf{q}} v_{sb}(\mathbf{q}) \bar{S}^z(-\mathbf{q}) \bar{S}^z(\mathbf{q})
\]

\(\Rightarrow \) Favours \(\langle \bar{S}^z(\mathbf{q}) \rangle = 0 \)

- Symmetry breaking \(SU(2) \rightarrow U(1) \) governed by parameter \(d/l_B \sim 1 \) (larger than in graphene case, \(a/l_B \sim 0.02 \))
Comparison with bilayer quantum Hall systems

- Layer index \rightarrow isospin $\alpha = \pm$ (in addition to physical spin)

- Explicit isospin $SU(2)$ symmetry breaking due to different intralayer and interlayer interactions:

 $$H_{bs} = 2 \sum_{\mathbf{q}} v_{sb}(\mathbf{q}) \bar{S}^z(-\mathbf{q}) \bar{S}^z(\mathbf{q})$$

 \Rightarrow Favours $\langle \bar{S}^z(\mathbf{q}) \rangle = 0$

- Symmetry breaking $SU(2) \rightarrow U(1)$ governed by parameter $d/l_B \sim 1$ (larger than in graphene case, $a/l_B \sim 0.02$)

- At $\nu_T = \nu_+ + \nu_- = 1$: easy-plane isospin ferromagnetism or else: $U(1)$ exciton superfluid
Conclusions (I)

- Graphene: example of relativistic electrons in a condensed matter system
 - linear energy dispersion at the two inequivalent BZ corners K and K'
 \Rightarrow two-fold chirality degeneracy at low energies
Conclusions (I)

- Graphene: example of relativistic electrons in a condensed matter system
 - linear energy dispersion at the two inequivalent BZ corners K and K'
 \Rightarrow two-fold chirality degeneracy at low energies
- Graphene in a magnetic field: novel type of quantum Hall effect
 - conductivity: $\sigma_{xy} = 2 \times \frac{e^2}{h} (2n + 1)$
 - relativistic Landau levels: $E_n \propto \sqrt{B|n|}$
 - degeneracies: spin+chirality in addition to orbital degeneracy
Conclusions (II)

- Electron interactions in graphene in the QH regime:
 - effective SU(2) interaction model [with spin: SU(4)]
 - symmetry-breaking terms of order $a/l_B \sim 0.02$
 - $n = 0$: electrostatic considerations
 - $n \neq 0$: backscattering terms (in exchange processes)
Conclusions (II)

- Electron interactions in graphene in the QH regime:
 - effective SU(2) interaction model [with spin: SU(4)]
 - symmetry-breaking terms of order $a/l_B \sim 0.02$
 - $n = 0$: electrostatic considerations
 - $n \neq 0$: backscattering terms (in exchange processes)
- Pseudopotentials: similarity between relativistic $n = 0$ and $n = 1$ LLs
 \Rightarrow possibility of FQHE in both levels
Conclusions (II)

• Electron interactions in graphene in the QH regime:
 - effective SU(2) interaction model [with spin: SU(4)]
 - symmetry-breaking terms of order $a/l_B \sim 0.02$
 $n = 0$: electrostatic considerations
 $n \neq 0$: backscattering terms (in exchange processes)
• Pseudopotentials: similarity between relativistic $n = 0$ and $n = 1$ LLs
 \Rightarrow possibility of FQHE in both levels
• Chirality ferromagnetism at $\nu = \pm 1$
 - responsible for observed quantum Hall effect ?
 - symmetry breaking $\text{SU}(2) \rightarrow \text{U}(1)$ in comparison with bilayer case
 - other experimental signatures ?