Mesoscopic Physics
of Electrons and Photons

Eric Akkermans and Gilles Montambaux

July 1st, 2006
Cover page : to be done
Wave propagation in random media has been the subject of an intense activity for more than two decades. This is now a large domain of research whose frontiers are still fuzzy and include a variety of problems such as wave localization (weak and strong), mesoscopic physics, effects of electron-electron interactions in metals, etc. Moreover, since many disorder effects are not truly specific to a given kind of waves, various approaches have been developed independently either in condensed matter physics, in optics, in atomic physics or in acoustics.

A large number of monographs or review articles already exist in the literature and they cover quite in detail various aspects of the field. Our purpose is rather to present on the one hand the basic common features of disorder effects on wave propagation and on the other hand to provide to the non-specialist reader the necessary tools needed to enter and practice this field of research.

Our first concern has been to give a description of the basic physical effects using a single formalism independent of the specific nature of the waves (electrons, electromagnetic waves, etc.). To this purpose, we have started by a detailed presentation of "single particle" average quantities such as density of states and elastic collision time using the framework of the so-called "Gaussian model" for the two most important examples of waves, namely Schrödinger and scalar Helmholtz wave equations. We have tried, as much as we could, to make precise the very basic notion of multiple scattering by an ensemble of independent effective scatterers whose scattering cross section may be obtained by means of standard one-particle scattering theory.

Nevertheless, the quantities of physical interest that are experimentally accessible to describe wave propagation in the multiple scattering regime depend essentially on the probability of quantum diffusion which describes the propagation of a wavepacket. This probability thus plays a central role and Chapter 4 is devoted to its detailed study. We see then emerging notions like classical (Diffuson) and coherent (Cooperon) contributions to the probability, which provide basic explanations to the observed physical phenomena such as weak localization corrections to electronic transport, negative magnetoresistance in a magnetic field, coherent backscattering of light as well as universal conductance fluctuations, optical speckles and mesoscopic effects in orbital magnetism.

It thus happens that all these effects result from the behavior of a single quantity, namely the probability of quantum diffusion. But in spite of this common background shared by optics and electronics of random media, each one of these domains has its own specificity which allows to develop complementary approaches. For instance, the continuous change of the relative phases of electronic wave functions that can be achieved by means of a magnetic field or a vector potential has no obvious equivalent in optics. On the other hand, it is possible in optics to change directions of incident and outgoing beams and from this angular spectroscopy to trace back correlations between angular channels.

We have made a special effort in trying to keep this book accessible to the largest audience starting at a graduate level in physics with an elementary acquaintance in quantum mechanics as a prerequisite. We have also been led to skip a number of interesting but perhaps too specialized issues among which
the study of quantum dots, relations between spectral and transport quantities, strong localization and the Anderson metal-insulator transition, electronic ballistic billiards where "quantum complexity" does not result from disorder but instead from the boundary shape and, metal-superconductor interfaces. All these aspects reflect the richness of the field of "quantum mesoscopic physics" to which this book constitutes a first introduction.

A pleasant task in finishing the writing of a book is certainly the compilation of acknowledgments to all those who have helped us at various stages of the elaboration and writing, either through discussions, criticisms and especially encouragements and support: O. Assaf, H. Bouchiat, B. Huard, J. Cayssol, C. Cohen-Tannoudji, N. Dupuis, D. Estève, A. Georges, S. Guéron, M. Kouchnir, R. Maynard, F. Piéchon, H. Pothier, B. Reulet, B. Shapiro, B. van Tiggelen, D. Ullmo, J. Vidal, E. Wolf. We wish to single out the contribution of C. Texier for his endless comments, suggestions, corrections which have certainly contributed to improve the quality of this book. Dov Levine has accepted to help us in translating the book into english. This was a real challenge and we wish to thank him for his patience in trying to teach us some good english. We also wish to thank G. Bazalitsky for carrying out most of the figures with a lot of dedication.

- Throughout this book, we use the (SI) international unit system, except in Chapter 13. The Planck constant \hbar is generally taken equal to unity in particular throughout Chapter 4. In the chapters where we think that it is important to restore it, we have mentioned it at the beginning of the corresponding chapter. In order to simplify the writing, we have sometimes partially restored \hbar in a given expression, especially when the correspondence between energy and frequency is straightforward.

- To keep homogeneous and consistent notations throughout a book which covers fields that are usually studied separately is a kind of challenge that, unfortunately, we have not always been able to overcome.

- We have chosen not to give an exhaustive list of references, but instead to quote papers either for their obvious pedagogical value or because they discuss a particular point presented for instance as an exercise.
Contents

1 Introduction: mesoscopic physics 15
 1.1 Interference and disorder 15
 1.2 The Aharonov-Bohm effect 19
 1.3 Phase coherence and effect of disorder 21
 1.4 Average coherence and multiple scattering 23
 1.5 Phase coherence and self-averaging: universal fluctuations 27
 1.6 Spectral correlations 28
 1.7 Classical probability and quantum crossings 29
 1.7.1 Quantum crossings 31
 1.8 Objectives .. 33

2 Wave equations in random media 45
 2.1 Wave equations 45
 2.1.1 Electrons in a disordered metal 45
 2.1.2 Electromagnetic wave equation - Helmholtz equation 46
 2.1.3 Other examples of wave equations 47
 2.2 Models of disorder 50
 2.2.1 The Gaussian model 51
 2.2.2 Localized impurities: the Edwards model 53
 2.2.3 The Anderson model 55
 2.1 Appendix A2.1 Theory of elastic collisions and single scattering 57
 2.1.1 Asymptotic form of the solutions 58
 2.1.2 Scattering cross section and scattered flux 59
 2.1.3 Optical theorem 61
 2.1.4 Born approximation 64
 2.2 Appendix A2.2 Reciprocity theorem 68
 2.3 Appendix A2.3 Light scattering 70
 2.3.1 Classical Rayleigh scattering 70
 2.3.2 Mie scattering 73
 2.3.3 Atom-photon scattering in the dipole approximation 75

3 Perturbation theory 85
 3.1 Green’s functions 86
 3.1.1 Green’s function for the Schrödinger equation 87
 3.1.2 Green’s function for the Helmholtz equation 87
 3.2 Multiple scattering expansion 94
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Dyson equation</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2 Self-energy</td>
<td>96</td>
</tr>
<tr>
<td>3.3 Average Green’s function and average density of states</td>
<td>101</td>
</tr>
<tr>
<td>3.1 Appendix A3.1 Short-range correlations</td>
<td>103</td>
</tr>
<tr>
<td>4 Probability of quantum diffusion</td>
<td>107</td>
</tr>
<tr>
<td>4.1 Definition</td>
<td>107</td>
</tr>
<tr>
<td>4.2 Free propagation</td>
<td>110</td>
</tr>
<tr>
<td>4.3 Drude-Boltzmann approximation</td>
<td>111</td>
</tr>
<tr>
<td>4.4 Diffusion or Ladder approximation</td>
<td>112</td>
</tr>
<tr>
<td>4.5 The Diffusion at the diffusion approximation</td>
<td>117</td>
</tr>
<tr>
<td>4.6 Coherent propagation : the Cooperon</td>
<td>119</td>
</tr>
<tr>
<td>4.7 Radiative transfer</td>
<td>125</td>
</tr>
<tr>
<td>4.1 Appendix A4.1 Diffuson and Cooperon in reciprocal space</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1 Collisionless probability $P_0(q, \omega)$</td>
<td>129</td>
</tr>
<tr>
<td>4.1.2 The Diffuson</td>
<td>130</td>
</tr>
<tr>
<td>4.1.3 The Cooperon</td>
<td>133</td>
</tr>
<tr>
<td>4.2 Appendix A4.2 Hikami boxes and Diffuson crossings</td>
<td>136</td>
</tr>
<tr>
<td>4.2.1 Hikami boxes</td>
<td>136</td>
</tr>
<tr>
<td>4.2.2 Normalization of the probability and renormalization of the diffusion coefficient</td>
<td>141</td>
</tr>
<tr>
<td>4.2.3 Crossing of two Diffusons</td>
<td>144</td>
</tr>
<tr>
<td>4.3 Appendix A4.3 Anisotropic collisions and transport mean free path</td>
<td>148</td>
</tr>
<tr>
<td>4.4 Appendix A4.4 Correlation of diagonal Green’s functions</td>
<td>155</td>
</tr>
<tr>
<td>4.5 Appendix A4.5 Other correlation functions</td>
<td>159</td>
</tr>
<tr>
<td>4.5.1 Correlations of Green’s functions</td>
<td>159</td>
</tr>
<tr>
<td>4.5.2 A Ward identity</td>
<td>161</td>
</tr>
<tr>
<td>4.5.3 Correlations of wavefunctions</td>
<td>162</td>
</tr>
<tr>
<td>5 Properties of the diffusion equation</td>
<td>165</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>5.2 Heat kernel and recurrence time</td>
<td>166</td>
</tr>
<tr>
<td>5.2.1 Heat kernel - Probability of return to the origin</td>
<td>166</td>
</tr>
<tr>
<td>5.2.2 Recurrence time</td>
<td>168</td>
</tr>
<tr>
<td>5.3 Free diffusion</td>
<td>169</td>
</tr>
<tr>
<td>5.4 Diffusion in a periodic box</td>
<td>172</td>
</tr>
<tr>
<td>5.5 Diffusion in finite systems</td>
<td>173</td>
</tr>
<tr>
<td>5.5.1 Diffusion time and Thouless energy</td>
<td>173</td>
</tr>
<tr>
<td>5.5.2 Boundary conditions for the diffusion equation</td>
<td>174</td>
</tr>
<tr>
<td>5.5.3 Finite volume and “zero mode”</td>
<td>175</td>
</tr>
<tr>
<td>5.5.4 Diffusion in an anisotropic domain</td>
<td>175</td>
</tr>
<tr>
<td>5.6 One-dimensional diffusion</td>
<td>176</td>
</tr>
<tr>
<td>5.6.1 The ring - periodic boundary conditions</td>
<td>178</td>
</tr>
<tr>
<td>5.6.2 Absorbing boundaries : connected wire</td>
<td>179</td>
</tr>
<tr>
<td>5.6.3 Reflecting boundaries : isolated wire</td>
<td>180</td>
</tr>
<tr>
<td>5.6.4 Semi-infinite wire</td>
<td>182</td>
</tr>
</tbody>
</table>
6.8 Dephasing or decoherence? 258
6.1 Appendix A6.1 Aharonov-Bohm effect in an infinite plane . 260
6.2 Appendix A6.2 Functional representation of the diffusion equation 263
6.2.1 Functional representation 263
6.2.2 Brownian motion and magnetic field 264
6.3 Appendix A6.3 The Cooperon in a time-dependent field 268
6.4 Appendix A6.4 Spin-orbit coupling and magnetic impurities: a
heuristic point of view 272
6.4.1 Spin-orbit coupling 272
6.4.2 Magnetic impurities 274
6.5 Appendix A6.5: Decoherence in multiple scattering of light by
cold atoms .. 277
6.5.1 Scattering amplitude and atomic collision time 277
6.5.2 Elementary atomic vertex 278
6.5.3 Structure factor 284

7 Electronic transport .. 291
7.1 Introduction ... 291
7.2 Incoherent contribution to conductivity 294
7.2.1 Drude-Boltzmann approximation 294
7.2.2 The multiple scattering regime: the Diffuson 297
7.2.3 Transport time and vertex renormalization 299
7.3 Cooperon contribution 300
7.4 The weak localization regime 301
7.4.1 Dimensionality effect 302
7.4.2 Finite size conductors 305
7.4.3 Temperature dependence 306
7.5 Weak localization in a magnetic field 307
7.5.1 Negative magnetoresistance 307
7.5.2 Spin-orbit coupling and magnetic impurities 311
7.6 Magnetoresistance and Aharonov-Bohm flux 313
7.6.1 Ring ... 313
7.6.2 Long cylinder: the Sharvin-Sharvin effect 314
7.6.3 Remark on the Webb and Sharvin-Sharvin experiments:
\(\phi_0 \) vs. \(\phi_0/2 \) .. 316
7.6.4 The Aharonov-Bohm effect in an infinite plane 316
7.1 Appendix A7.1 Kubo formulae 318
7.1.1 Conductivity and dissipation 318
7.1.2 Density-density response function 322
7.2 Appendix A7.2 Conductance and transmission 324
7.2.1 Introduction - Landauer formula 324
7.2.2 From Kubo to Landauer 326
7.2.3 Average conductance and transmission 328
7.2.4 Boundary conditions and impedance matching 332
7.2.5 Weak localization correction in the Landauer formalism 334
7.2.6 Landauer formalism for waves 335
7.3 Appendix A7.3 Real space description of conductivity .. 338
CONTENTS

7.4 Appendix A
7.4.1 Weak localization correction and anisotropic collisions ... 340

8 Coherent backscattering of light ... 343
8.1 Introduction ... 343
8.2 The geometry of the albedo ... 344
 8.2.1 Definition .. 344
 8.2.2 Albedo of a diffusive medium .. 345
8.3 The average albedo .. 347
 8.3.1 Incoherent albedo: contribution of the Diffuson ... 347
 8.3.2 The coherent albedo: contribution of the Cooperon .. 350
8.4 Time dependence of the albedo and study of the triangular cusp .. 353
8.5 Effect of absorption ... 356
8.6 Coherent albedo and anisotropic collisions ... 357
8.7 The effect of polarization ... 359
 8.7.1 Depolarization coefficients ... 360
 8.7.2 Coherent albedo of a polarized wave ... 360
8.8 Experimental results .. 362
 8.8.1 The triangular cusp ... 363
 8.8.2 Decrease of the height of the cone ... 365
 8.8.3 The role of absorption .. 367
8.9 Coherent backscattering at large .. 369
 8.9.1 Coherent backscattering and the “glory” effect .. 370
 8.9.2 Coherent backscattering and opposition effect in astrophysics ... 371
 8.9.3 Coherent backscattering by cold atomic gases .. 373
 8.9.4 Coherent backscattering effect in acoustics ... 375

9 Diffusing wave spectroscopy .. 377
9.1 Introduction .. 377
9.2 Dynamic correlations of intensity .. 378
9.3 Single scattering: QELS .. 380
9.4 Multiple scattering: diffusing wave spectroscopy .. 381
9.5 Influence of the geometry on the time correlation function ... 382
 9.5.1 Reflection by a semi-infinite medium ... 382
 9.5.2 Comparison between $G_1^r(T)$ and $\alpha_c(\theta)$... 383
 9.5.3 Reflection from a finite slab .. 387
 9.5.4 Transmission ... 387
9.1 Appendix A9.1 Collective motion of scatterers .. 390

10 Spectral properties of disordered metals .. 393
10.1 Introduction ... 393
10.1.1 Level repulsion and integrability ... 394
10.1.2 Energy spectrum of a disordered metal .. 397
10.2 Characteristics of spectral correlations .. 397
10.3 Poisson distribution .. 400
10.4 Random matrix theory .. 401
 10.4.1 Level repulsion in 2×2 matrices .. 401
10.4.2 Distribution of eigenvalues for $N \times N$ matrices 403
10.4.3 Spectral properties of random matrices 405
10.5 Spectral correlations in the diffusive regime 409
10.5.1 Two-point correlation function 410
10.5.2 The ergodic limit 414
10.5.3 Free diffusion limit 415
10.1 Appendix A 10.1 The GOE-GUE transition 419

11 Universal conductance fluctuations 421
11.1 Introduction 421
11.2 Conductivity fluctuations 424
11.2.1 Fluctuations of the density of states 426
11.2.2 Fluctuations of the diffusion coefficient 430
11.3 Universal conductance fluctuations 430
11.4 Effect of external parameters 433
11.4.1 Energy dependence 434
11.4.2 Temperature dependence 434
11.4.3 Phase coherence and mesoscopic regime 436
11.4.4 Magnetic field dependence 440
11.4.5 Motion of scatterers 442
11.4.6 Spin-orbit coupling and magnetic impurities 443
11.1 Appendix A 11.1 Universal conductance fluctuations and anisotropic collisions 446
11.2 Appendix A 11.2 Conductance fluctuations in the Landauer formalism 448

12 Correlations of speckle patterns 451
12.1 What is a speckle pattern? 451
12.2 How to analyze a speckle pattern? 452
12.3 Average transmission coefficient 456
12.4 Angular correlations of the transmitted light 459
12.4.1 Short range $C^{(1)}$ correlations 459
12.4.2 Long range correlations $C^{(2)}$ 463
12.4.3 Two-crossing contribution and $C^{(3)}$ correlation 465
12.4.4 Relation with universal conductance fluctuations 468
12.5 Speckle correlations in the time domain 470
12.5.1 Time dependent correlations $C^{(1)}(t)$ and $C^{(2)}(t)$ 470
12.5.2 Time dependent correlation $C^{(3)}(t)$ 473
12.6 Spectral correlations of speckle patterns 475
12.7 Distribution function of the transmission coefficients 477
12.7.1 Rayleigh distribution law 477
12.7.2 Gaussian distribution of the transmission coefficient T_a 479
12.7.3 Gaussian distribution of the electrical conductance 480
12.1 Appendix A 12.1 Spatial correlations of light intensity 482
12.1.1 Short range correlations 483
12.1.2 Long range correlations 485
13 Interactions and diffusion 489
 13.1 Introduction ... 489
 13.2 Screened Coulomb interaction 490
 13.3 Hartree-Fock approximation 492
 13.4 Density of states anomaly 494
 13.4.1 Static interaction 494
 13.4.2 Tunnel conductance and density of states anomaly 499
 13.4.3 Dynamically screened interaction 501
 13.4.4 Capacitive effects 505
 13.5 Correction to the conductivity 507
 13.6 Lifetime of quasiparticle 510
 13.6.1 Introduction : Landau theory and disorder 510
 13.6.2 Lifetime at zero temperature 511
 13.6.3 Quasiparticle lifetime at finite temperature 517
 13.6.4 Quasiparticle lifetime at the Fermi level 519
 13.7 Phase coherence .. 521
 13.7.1 Introduction ... 521
 13.7.2 Phase coherence in a fluctuating electric field 523
 13.7.3 Phase coherence time in dimension $d = 1$ 526
 13.7.4 Phase coherence and quasiparticle relaxation 530
 13.7.5 Phase coherence time in dimensions $d = 2$ and $d = 3$ 533
 13.7.6 Measurements of the phase coherence time $\tau_{ee,\phi}$ 534
 13.1 Appendix A13.1 Screened Coulomb potential in confined geometry 537
 13.2 Appendix A13.2 Lifetime in the absence of disorder 540

14 Orbital magnetism and persistent currents 543
 14.1 Introduction ... 543
 14.2 Free electron gas in a uniform field 545
 14.2.1 A reminder : the case of no disorder 545
 14.2.2 Average magnetization 547
 14.2.3 Fluctuations of the magnetization 549
 14.3 Effect of Coulomb interaction 551
 14.3.1 Hartree-Fock approximation 552
 14.3.2 Cooper renormalization 553
 14.3.3 Finite temperature 554
 14.4 Persistent current in a ring 555
 14.4.1 Clean one-dimensional ring : periodicity and parity effects 556
 14.4.2 Average current ... 561
 14.5 Diffusive limit and persistent current 562
 14.5.1 Typical current of a disordered ring 563
 14.5.2 Effect of the Coulomb interaction on the average current 565
 14.5.3 Persistent current and spin-orbit coupling 568
 14.5.4 A brief overview of experiments 570
 14.1 Appendix A14.1 Average persistent current in the canonical ensemble 572
15 Formulary

15.1 Density of states and conductance 575
15.2 Fourier transforms - Definitions 576
15.3 Collisionless probability $P_0(r, r', t)$ 576
15.4 Probability $P(r, r', t)$ 577
15.5 Wigner-Eckart theorem and $3j$-symbols 579
15.6 Miscellaneous ... 580
15.7 Poisson formula .. 587
15.8 Temperature dependences 587
15.9 Characteristic times introduced in this book 589
Topics developed in this book. Lines represent logical links between chapters.