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Abstract

We study the stationary Josephson effect in a ballistic superconductor/ferromagnet/superconductor junction for arbitrarily large spin

polarizations. Due to the exchange interaction in the ferromagnet, the Andreev reflection is incomplete. We describe how this effect

modifies the Josephson current in the crossover from a superconductor/normal metal/superconductor junction to a superconductor/half

metal/superconductor junction.
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In the past, the Josephson effect in superconductor/
ferromagnet/superconductor (SFS) junctions has mainly
been studied for small spin polarizations. The Josephson
current is due to the Andreev [1] conversion of singlet
Cooper pairs into correlated electrons and holes with
opposite spins, which propagate coherently in the ferro-
magnetic metal. Applying the Eilenberger equations [2] to a
clean multichannel SFS junction, Buzdin et al. [3] have
predicted that this non dissipative current oscillates as a
function of both the exchange energy splitting Eex and the
length d of the ferromagnet, because of the mismatch
between spin-up and spin-down Fermi wavevectors
2Eex=ð_vFÞ. This quasiclassical result assumes that the
Andreev reflection is complete, as it is fully justified for
weakly spin-polarized ferromagnetic alloys. This assump-
tion is incorrect for devices with high spin polarization
which are used to manipulate spin-polarized currents [4]. In
the recently discovered half metals (HM) such as CrO2, the
current is completely spin-polarized because one spin
subband is insulating. Strong ferromagnetic elements like
- see front matter r 2005 Elsevier B.V. All rights reserved.
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Fe, Co or Ni, also exhibit quite large spin polarizations
[5,6]. Therefore, it is important to revisit the physics of the
SFS Josephson effect for arbitrarily large spin polarizations.
Moreover first experimental evidence for oscillating critical
currrent have been recently reported in Nb–Ni–Nb
junctions [7] and in Nb–FeNi–Nb junctions [8].
In Section 1, we first consider a purely one-dimensional

clean ferromagnet connected between two superconducting
leads. The excitation spectrum and the current are obtained
for arbitrary large spin polarizations Z ¼ Eex=EF using the
Bogoliubov–de Gennes equations. The probability for
Andreev reflection decreases abruptly when Eex approaches
the Fermi energy EF [9]. Then, the Andreev scattering is
replaced by normal reflection of electrons and the
Josephson current vanishes. In Section 2, we consider the
more realistic case of a multichannel SFS junction with a
finite section. As the exchange field is increased, the
Andreev reflection is suppressed for electrons propagating
with a large incidence, so that the number of channels
contributing to the total current decreases. For large spin
polarizations, we find that the current depends separately

on the product kFd and on the spin polarization Z. The
oscillations of the critical current are reduced and shifted

comparatively to the predictions of the quasiclassical
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theory [3] in which only the single parameter 2Eexd=ð_vFÞ

¼ ZkFd is relevant. For small spin polarizations, we
naturally recover the quasiclassical results. In the opposite
limit of a half metal Eex ! EF, the critical current tends to
zero because the Andreev reflection is totally suppressed
for all the transverse channels. Our results are in agreement
with those of Radovic et al. [10] although they are not
derived in the same way.
1. Purely one-dimensional SFS junction

We consider a purely one-dimensional ballistic ferro-
magnet with length d connected between two super-
conducting leads.
1.1. Model

The itinerant ferromagnetism is described within the
Stoner model by an effective potential
Vs ¼ VsðxÞ ¼ �sEex, which depends on the spin direction
s ¼ �1. The superconducting pair potential is DðxÞ ¼
jDjeiw=2 in the left lead and DðxÞ ¼ jDje�iw=2 in the right one.
In the absence of spin-flip scattering, the Bogoliubov–de
Gennes, equations split in two sets of independent
equations for the spin channels ðu"; v#Þ and ðu#; v"Þ

Ho þ Vs DðxÞ

DðxÞ� �H�o þ Vs

 !
us

v�s

 !
¼ �

us

v�s

 !
, (1)

where � ¼ �ðwÞ is the quasiparticle energy measured from
the Fermi energy EF ¼ _2k2

F=2m. The kinetic part of the
Hamiltonian is Ho ¼ ½ð�i_d=dx� qAðxÞÞ2 � EF�=2m

where m is the effective mass of electrons and holes. The
vector potential AðxÞ is responsible for the phase difference
w between the leads.
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Fig. 1. Spectrum and current of a short SFS junction for increasing spin

polarizations Z with kFd ¼ 10 obtained from solving Eq. 3. The thin lines

represent the corresponding quasiclassical estimations. Io ¼ 2pD=fo.
1.2. Eigenvalue equation

In the ferromagnet, the eigenvectors of Eq. (1) are
electrons and holes with plane wave spatial dependencies.
The electron and hole longitudinal wavevectors, denoted
respectively ks

�;Z and h�s�;Z , satisfy

_2½ks
�;Z�

2

2m
� EF ¼ �þ sEex,

_2½h�s�;Z �
2

2m
� EF ¼ ��� sEex. (2)

Matching the wavefunctions and their derivatives at the FS
interfaces, we obtain the following eigenvalue equation for
the Andreev levels [11]

16kh cos w ¼ � 2ðk2
� k2

FÞðh
2
� k2

FÞ½cosDkd � cosSkd�

� ðk � kFÞ
2
ðhþ kFÞ

2 cosðSkd þ 2j�Þ

� ðk þ kFÞ
2
ðh� kFÞ

2 cosðSkd � 2j�Þ
þ ðk þ kFÞ
2
ðhþ kFÞ

2 cosðDkd � 2j�Þ

þ ðk � kFÞ
2
ðh� kFÞ

2 cosðDkd þ 2j�Þ, ð3Þ

where for convenience, we define k ¼ ks
�;Z, h ¼ h�s�;Z , Dk ¼

Dks
�;Z ¼ k � h, Sk ¼ Sks

�;Z ¼ k þ h and j� ¼ arccosð�=DÞ.
There are four typical energies in this problem: the
superconducting gap D, the exchange energy Eex, the level
spacing minð_vF=d;DÞ and the Fermi energy EF. As seen
from Eq. (3), the exact spectrum �sðwÞ depends on two
parameters: the spin polarization Z ¼ Eex=EF and the
product kFd, whereas it depends only on the single
combination ZkFd in the quasiclassical approximation. In
the present work, the spin polarization Z ¼ Eex=EF is
arbitrary and the ratio D=EF51.

1.3. Spectrum and current

For small spin polarizations Z! 0, we recover the
spectrum of Ref. [12]

cos w ¼ cos
2�d

_vF
þ a� 2j�

� �
, (4)

where the parameter a ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ Z
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1� Z
p

ÞkFd is the
phase shift accumulated between an electron and a hole
located at the Fermi level during their propagation on a
length d. For a finite spin polarization Z, we have shown in
Ref. [11] that gaps open at w ¼ 0 and w ¼ p, see Figs. 1(a,b).
Except for these gaps and up to large spin polarizations,
the spectrum is identical to the one given by the Eq. (4)
assuming complete Andreev reflection, and the current is
practically unaffected (Fig. 1(d)). However, the spectrum
undergoes a qualitative change above a particular spin
polarization Z�: a gap opens at the Fermi level as shown in
Fig. 1(c) and the current has no discontinuity anymore
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Fig. 2. Zero temperature critical current Ic as a function of Z ¼ Eex=EF

for different lengths of the ferromagnet kFd ¼ 1; 5; 10. Io ¼ pD0=ðeRN Þ

with RN ¼ h=ð2e2MÞ and M ¼ k2
FS=4p.
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Fig. 3. Zero temperature critical current Ic as a function of kFd (thick

lines), for different values of Z. As the spin polarization increases, the exact

current deviates from the quasiclassical estimate (thin lines).

Io ¼ pD=ðeRN Þ.
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(Fig. 1(e)). The region Z�oZo1 in which Andreev
reflection and ordinary reflection coexist is extremely small
and scales as 1=ðkFdÞ2. As a result, the Josephson current
through a single channel SFS junction is given to great
accuracy by the formula with perfect Andreev reflection [3]

iðw; kFd; Z; yn ¼ 0Þ ¼
pD
fo

X
s¼�1

sin
wþ sa

2

� tanh
D
2T

cos
wþ sa

2

� �� �
, ð5Þ

for ZoZ� � 1 and it is zero for Z41. In Eq. (5), fo ¼ h=e is
the magnetic flux quantum.

2. Multichannel SFS junction

We consider now a ballistic SFS junction with a finite
width [13]. The transverse channels are labelled by the
incidence angle yn. An electron cannot find a hole to form
an Andreev bound state if its transverse energy En ¼

EFsin
2yn4EF � Eex. Thus for angle yn4yZ ¼ arccos

ffiffiffi
Z
p

,
the electron is normally reflected as an electron with the
same spin. Such a process is insensitive to the super-
conducting phase and thus carry no Josephson current. In
the opposite case yn5yZ, the Andreev reflection is complete
and supports a finite current. In the following, the former
kind of channel is referred as ‘‘Andreev inactive’’ and the
latter as ‘‘Andreev active’’. Generalizing the result of
Section 1.3, we obtain that the crossover between Andreev
active and inactive channels occurs in a narrow window of
incidences at vicinity of yZ ¼ arccos

ffiffiffi
Z
p

. Below this cut-off,
the current carried by a single Andreev active channel is

iðw; kFd; Z; ynÞ ¼
pD
fo

X
s¼�1

sin
wþ san

2

� tanh
D
2T

cos
wþ san

2

� �� �
, ð6Þ

and it is zero for yZ4 arccos
ffiffiffi
Z
p

. Treating large exchange
splitting requires to take into account the exact band
structure. For an isotropic parabolic band, the phase shift
between an electron and its Andreev reflected hole is

an ¼ kFd cos yn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Z
cos2yn

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Z
cos2yn

r� �
. (7)

The total current is the sum of the currents carried by each
of the Andreev active levels

Iðw; kFd; ZÞ ¼
k2
FS

2p

Z yZ

0

dy sin y cos y iðw; kFd; Z; yÞ, (8)

where S is the cross section area of the ferromagnet. This
expression, together with Eqs. (6) and (7), gives the
Josephson current Iðw; kFd; ZÞ of a clean SFS junction in
for arbitrarily large spin polarization. Fig. 2 represents the
critical current as a function of the spin polarization Z,
extrapolating from a SNS junction ðZ ¼ 0Þ to a S/HM/S
junction ðZ ¼ 1Þ. The local minima of the critical current
correspond to 0� p transitions [10]. In the limit of small
polarization Z ¼ Eex=EF! 0, we recover the quasiclassical
current-phase relationship [3] in which all the transverse
channels contribute because yZ! p=2. When Z is in-
creased, the oscillations of the critical current as a function
of the length d deviate from the expectations of the
quasiclassical calculation, as shown in Fig. 3. The effect of
a finite temperature on the critical current has been
considered in Ref. [13].
In conclusion, we have obtained the Josephson current

in a short ballistic SFS junction in the range of large spin
polarizations which is relevant for spintronics materials.
The physical effect involved is the suppression of Andreev
reflection as the exchange energy is increased. The active
levels with small incidence are essentially unaffected by the
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ordinary reflection whereas levels with high incidence do
not carry any current.

We thank Zoran Radovic for useful discussions and Igor
Zutic for his comments.
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