Supervisory authorities

CNRS Nom tutelle 1


Home > Publications



  • F. Boulogne, F. Ingremeau, and H. A. Stone, “Coffee-stain growth dynamics on dry and wet surfaces”, Journal of Physics: Condensed Matter, vol. 29, no. 7, p. 074001, 2017.
    Abstract: The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.
    Tags: evaporation.

  • L. Champougny, E. Rio, and F. Restagno, “The break-up of free films pulled out of a pure liquid bath”, Journal of Fluid Mechanics, vol. 811, p. 499–524, 2017.
    Tags: breakup, coalescence, thin films.

  • M. Hénot, A. Chennevière, E. Drockenmuller, K. Shull, L. Léger, and F. Restagno, “Influence of grafting on the glass transition temperature of PS thin films”, The European Physical Journal E, vol. 40, no. 1, 2017.

  • A. Korolkovas, C. Rodriguez-Emmenegger, A. de los Santos Pereira, A. Chennevière, F. Restagno, M. Wolff, F. A. Adlmann, A. J. C. Dennison, and P. Gutfreund, “Polymer Brush Collapse under Shear Flow”, Macromolecules, Feb. 2017.

  • A. Sauret, F. Boulogne, K. Somszor, E. Dressaire, and H. A. Stone, “Drop morphologies on flexible fibers: influence of elastocapillary effects”, Soft Matter, vol. 13, no. 1, p. 134-140, 2017.


  • H. Alarcón, T. Salez, C. Poulard, J. - F. Bloch, É. Raphaël, K. Dalnoki-Veress, and F. Restagno, “Self-Amplification of Solid Friction in Interleaved Assemblies”, Physical review letters, vol. 116, no. 1, p. 015502, 2016.

  • B. Andreotti, O. Baumchen, F. Boulogne, K. E. Daniels, E. R. Dufresne, H. Perrin, T. Salez, J. H. Snoeijer, and R. W. Style, “Solid Capillarity: When and How does Surface Tension Deform Soft Solids?”, Soft Matter, vol. 12, no. 12, p. 2993-2996, 2016.
    Abstract: Soft solids differ from stiff solids in an important way: their surface stresses can drive large deformations. Based on a topical workshop held in the Lorentz Center in Leiden, this Opinion highlights some recent advances in the growing field of solid capillarity and poses key questions for its advancement.
    Tags: wetting.

  • F. Boulogne, F. Ingremeau, L. Limat, and H. A. Stone, “Tuning the receding contact angle on hydrogels by addition of particles”, Langmuir, vol. 32, no. 22, p. 5573-5579, 2016.
    Abstract: Control of the swelling, chemical functionalization, and adhesivity of hydrogels are finding new applications in a wide range of material systems. We investigate experimentally the effect of adsorbed particles on hydrogels on the depinning of contact lines. In our experiments, a water drop containing polystyrene microspheres is deposited on a swelling hydrogel, which leads to the drop absorption and particle deposition. Two regimes are observed: a decreasing drop height with a pinned contact line followed by a receding contact line. We show that increasing the particles concentration increases the duration of the first regime and significantly decreases the total absorption time. The adsorbed particles increase the pinning force at the contact line. Finally, we develop a method to measure the receding contact angle with the consideration of the hydrogel swelling.
    Tags: absorption.

  • F. Boulogne, Y. L. Kong, J. K. Nunes, and H. A. Stone, “Effect of the polydispersity of a colloidal drop on the drying induced stress as measured by the buckling of a floating sheet”, Physical Review Letters, vol. 116, no. 23, p. 238001, 2016.

  • L. Champougny, M. Roché, W. Drenckhan, and E. Rio, “Life and Death of not so "bare" bubbles”, Soft Matter, vol. 12, p. 5276–5284, 2016.

  • A. Chenneviere, F. Cousin, F. Boue, E. Drockenmuller, K. R. Shull, L. Leger, and F. Restagno, “Direct Molecular Evidence of the Origin of Slip of Polymer Melts on Grafted Brushes”, MACROMOLECULES, vol. 49, no. 6, p. 2348-2353, 2016.
    Abstract: Neutron reflectivity has been used to investigate the effect of shear on the conformation of hydrogenated polystyrene chains end-grafted on a silicon wafer and covered by a deuterated polystyrene melt, in the grafting regime where the grafted chains at equilibrium extend in the bulk up to their radius of gyration. An experimental setup has been built to shear the samples above their glass transition temperature and then quench them rapidly after the shear. The flow-induced distorted conformation of the end-tethered chains was characterized by neutron reflectivity. We show that the effect of the shear is a decoupling between the grafted chains and the bulk chains which leads to a strong slip of the polymer melt at the solid interface.
  • K. Dalnoki-Veress, T. Salez, and F. Restagno, “Why can't you separate interleaved books?”, PHYSICS TODAY, vol. 69, no. 6, p. 74-75, 2016.

  • E. Dressaire, A. Sauret, F. Boulogne, and H. A. Stone, “Drop impact on a flexible fiber”, Soft Matter, vol. 12, no. 1, p. 200-208, 2016.
    Abstract: When droplets impact fibrous media, the liquid can be captured by the fibers or contact then break away. Previous studies have shown that the efficiency of drop capture by a rigid fiber depends on the impact velocity and a threshold velocity was defined below which the drop is captured. However, it is necessary to consider the coupling of elastic and capillary effects to achieve an improved understanding of the capture process for soft substrates. Here, we study experimentally the dynamics of a single drop impacting on a thin flexible fiber. Our results demonstrate that the threshold capture velocity depends on the flexibility of fibers in a non-monotonic way. We conclude that tuning the mechanical properties of fibers can optimize the efficiency of droplet capture.

  • E. Forel, E. Rio, M. Schneider, S. Beguin, D. Weaire, S. Hutzler, and W. Drenckhan, “Volume and surface fraction of liquid dispersions”, Soft Matter, vol. 12, no. 38, p. 8025–8029, 2016.

  • A. Giustiniani, P. Guégan, M. Marchand, C. Poulard, and W. Drenckhan, “Generation of Silicone Poly-HIPEs with Controlled Pore Sizes via Reactive Emulsion Stabilization”, Macromolecular Rapid Communications, vol. 37, no. 18, p. 1527–1532, 2016.

  • S. Jones, E. Rio, C. Cazeneuve, L. Nicolas-Morgantini, F. Restagno, and G. S. Luengo, “Tribological influence of a liquid meniscus in human sebum cleaning”, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 498, p. 268-275, 2016.
    Abstract: The interaction of surfactants in solution with hydrophobic materials is at the root of the process of detergency. Lipid containing micelles are formed in solution, and through water rinsing, these structures are washed out from the surface. The presence of air in the solution and the formation of foam add complexity to the system due to the increased proportion of water interfaces in contact with the surface. The latter situation is more difficult to understand. In this work, we propose, as a first step, to explore the role of the interfaces in cleaning silicon wafers previously coated with a model lipid mixture representing human sebum has been investigated. It turns out that the presence of interfaces enhances the cleaning efficiency. The effect of altering the surface properties of the silicon wafer was also investigated and it was found that changing the contact angle of the wafer brought a very strong effect on the cleaning efficiency. (C) 2016 Elsevier B.V. All rights reserved.
    Tags: Detergency, Foam-oil interaction, Surface energy.

  • H. Kim, F. Boulogne, E. Um, I. Jacobi, E. Button, and H. A. Stone, “Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules”, Physical Review Letters, vol. 116, no. 12, p. 124501, 2016.

  • R. Ledesma-Alonso, E. Raphaël, L. Léger, F. Restagno, and C. Poulard, “Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition”, in Proc. R. Soc. A, 2016, vol. 472, p. 20160235.

  • V. Miralles, E. Rio, and M. -caroline Jullien, “Soft Matter Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam †”, Soft Matter, vol. 12, p. 7056–7062, 2016.
  • C. Poulard, A. Dessombz, M. Daudon, and D. Bazin, “Duration of JJ stent in situ is critical: An ultrastructural and mechanical investigation”, Comptes Rendus Chimie, 2016.

  • A. Salonen, C. Gay, A. Maestro, W. Drenckhan, and E. Rio, “Arresting bubble coarsening : A two-bubble experiment to investigate grain growth in the presence of surface elasticity”, European Physics Letters, vol. 116, p. 46005, 2016.

  • Y. Zhu, A. Bironeau, F. Restagno, C. Sollogoub, and G. Miquelard-Garnier, “Kinetics of thin polymer film rupture: Model experiments for a better understanding of layer breakups in the multilayer coextrusion process”, POLYMER, vol. 90, p. 156-164, 2016.
    Abstract: We show that the kinetics of bursting of a thin film embedded in another polymer matrix can be well described by a simple equation balancing the viscous and capillary forces. The role of viscosity, interfacial tension and thickness of the layers under static conditions was investigated by adapting a simple model experiment initially designed to study the dewetting of a thin polymer film on another polymer substrate. Kinetics was correlated to instabilities occurring during multilayer coextrusion leading to the break-up of layers below a critical nanometric thickness. The results suggest that shear and elongation forces during the process actually stabilize the layers. Understanding these instabilities is of great interest since this innovative process showed potential to design at an industrial scale macromolecular materials displaying new macroscopic properties, due to interfacial and confinement effects. However, instabilities leading to the breaking of these nanometric layers will alter final properties (optical, gas barrier.). (C) 2016 Elsevier Ltd. All rights reserved.
    Tags: Dewetting, Multilayer coextrusion, Thin film.



  • F. Boulogne, L. Pauchard, F. Giorgiutti-Dauphiné, R. Botet, R. Schweins, M. Sztucki, J. Li, B. Cabane, and L. Goehring, “Structural anisotropy of directionally dried colloids”, EPL, vol. 105, p. 38005, 2014.

  • F. Boulogne and H. A. Stone, “Self-crumpling elastomers: bending induced by the drying stimulus of a nanoparticle suspension”, EPL, vol. 108, p. 19001, 2014.

  • H. Caps, G. Delon, N. Vandewalle, R. M. Guillermic, O. Pitois, A. L. Biance, L. Saulnier, P. Yazhgur, E. Rio, A. Salonen, and D. Langevin, “Does water foam in microgravity?”, Europhysics News, vol. 45, no. 3, p. 22–25, 2014.
  • H. Caps, N. Vandewalle, A. Saint-jalmes, L. Saulnier, P. Yazhgur, E. Rio, A. Salonen, and D. Langevin, “How foams unstable on earth behave in mocrogravity?”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 457, p. 392–396, 2014.
  • N. Kang, P. Auban-Senzier, C. Li, C. Poulard, and C. R. Pasquier, “One-dimensional electronic transport at the organic charge-transfer interfaces under high pressures”, Applied Physics Letters, vol. 104, no. 19, p. 193302, 2014.

  • A. Maestro, E. Rio, W. Drenckhan, D. Langevin, and A. Salonen, “Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.”, Soft matter, vol. 10, p. 6975–6983, 2014.
    Abstract: We have studied foams stabilised by surfactant-decorated nanoparticles adsorbed at the bubble surfaces. We show that the controlled compression of a single bubble allows one to understand the coarsening behavior of these foams. When bubbles are compressed, the particles become tightly packed in the surface layer. They lose their mobility, and the interface becomes solid-like when the jammed state is reached. Further compression leads to interfacial buckling characterised by crumpled surfaces. We find that the surface concentration of particles at which the jamming and the buckling transitions occur are independent of the surfactant concentration. This is a surprising feature. It suggests that the surfactants are mandatory to help the particles adsorb at the interface and that they change the equilibrium surface concentration of the decorated particles. But they do not affect the surface properties once the particles are adsorbed. We measured the compression elastic modulus of the surface in the jammed state and found it to be compatible with the Gibbs condition for which the spontaneous dissolution of bubbles is arrested. Due to this effect, the coarsening process of a foam composed of many close-packed bubbles occurs in two steps. In the first step, coarsening is slow and coalescence of the bigger bubbles is observed. In the second step, a number of very small bubbles remains, which exhibit crumpled surfaces and are stable over long times. This suggests that foam coarsening is arrested once the smallest bubbles become fully covered after the initial shrinking step.
  • F. Restagno, E. Martinot, R. Villey, S. Leroy, C. Poulard, E. Charlaix, and L. Léger, “Sensing the Mechanical Properties of Supported Micro-to Nano-elastic Films”, in Handbook of Nanomaterials Properties, Springer Berlin Heidelberg, 2014, p. 575–614.
  • E. Rio and A. - L. Biance, “Coalescence in liquid foams”, ChemPhysChem, vol. 15, no. 17, p. 3692–3707, 2014.
  • E. Rio, W. Drenckhan, A. Salonen, and D. Langevin, Unusually stable liquid foams, vol. 205. 2014.
    Abstract: Obtaining stable liquid foams is an important issue in view of their numerous applications. In some of these, the liquid foam in itself is of interest, in others, the liquid foam acts as a precursor for the generation of solid foam. In this short review, we will make a survey of the existing results in the area. This will include foams stabilised by surfactants, proteins and particles. The origin of the stability is related to the slowing down of coarsening, drainage or coalescence, and eventually to their arrest. The three effects are frequently coupled and in many cases, they act simultaneously and enhance one another. Drainage can be arrested if the liquid of the foam either gels or solidifies. Coalescence is slowed down by gelified foam films, and it can be arrested if the films become very thick and/or rigid. These mechanisms are thus qualitatively easy to identify, but they are less easy to model in order to obtain quantitative predictions. The slowing down of coarsening requests either very thick or small films, and its arrest was observed in cases where the surface compression modulus was large. The detail of the mechanisms at play remains unclear. © 2013 Elsevier B.V.
    Tags: Foam coalescence, Foam coarsening, Foam drainage, Stable foams.

  • A. Salonen, W. Drenckhan, and E. Rio, “Interfacial dynamics in foams and emulsions”, Soft Matter, vol. 10, p. 6870–6872, 2014.

0 | 50 | 100 | 150 | 200 | 250

--- Export the selection using the format