Home

We are the Theory group of LPS!

If you are interested in doing an internship with us, or want to visit and discuss, please contact any of our members.

We are a very collaborative group which covers a wide range of topics from material sciences (functional materials, topological and relativistic matter, magnetism and superconductivity...) and quantum systems (in low dimensions, under magnetic fields, in and out-of equilibrium...) to soft and bio- matter (colloids, liquid crystals...).

Explore and enjoy our site!

  • Most recent peer-reviewed publications are below.

Recent Publications

X. Lu and Goerbig, M. O., “Magneto-optical signatures of Volkov-Pankratov states in topological insulators”, {EPL} (Europhysics Letters), vol. 126, p. 67004, 2019. WebsiteAbstract
In addition to the usual chiral surface states, massive surface states can arise at a smooth interface between a topological and a trivial bulk insulator. While not subject to topological protection as the chiral states, these massive states, theorized by Volkov and Pankratov in the 1980s, reflect nevertheless emergent Dirac physics at the interface. We study theoretically the magneto-optical response of these surface states, which is strikingly different from that of the bulk states. Most saliently, we show that these states can be identified clearly in the presence of a magnetic field and its orientation with respect to the interface.
B. Loret, et al., “Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates”, Nature Physics, vol. 15, p. 771-775, 2019. WebsiteAbstract
The cuprate high-temperature superconductors develop spontaneous charge density wave (CDW) order below a temperature TCDW and over a wide range of hole doping (p). An outstanding challenge in the field is to understand whether this modulated phase is related to the more exhaustively studied pseudogap and superconducting phases1,2. To address this issue, it is important to extract the energy scale DCDW associated with the CDW order, and to compare it with the pseudogap DPG and with the superconducting gap DSC. However, while TCDW is well characterized from earlier work3, little is currently known about DCDW. Here, we report the extraction of DCDW for several cuprates using electronic Raman spectroscopy. We find that on approaching the parent Mott state by lowering p, DCDW increases in a manner similar to the doping dependence of DPG and DSC. This reveals that these three phases have a common microscopic origin. In addition, we find that DCDW [?] DSC over a substantial doping range, which suggests that CDW and superconducting phases are intimately related; for example, they may be intertwined or connected by an emergent symmetry1,4-9.
M. J. Rozenberg, Schneegans, O., and Stoliar, P., “An ultra-compact leaky-integrate-and-fire model for building spiking neural networks”, Scientific Reports, vol. 9, p. 11123, 2019. WebsiteAbstract
We introduce an ultra-compact electronic circuit that realizes the leaky-integrate-and-fire model of artificial neurons. Our circuit has only three active devices, two transistors and a silicon controlled rectifier (SCR). We demonstrate the implementation of biologically realistic features, such as spike-frequency adaptation, a refractory period and voltage modulation of spiking rate. All characteristic times can be controlled by the resistive parameters of the circuit. We built the circuit with out-of-the-shelf components and demonstrate that our ultra-compact neuron is a modular block that can be associated to build multi-layer deep neural networks. We also argue that our circuit has low power requirements, as it is normally off except during spike generation. Finally, we discuss the ultimate ultra-compact limit, which may be achieved by further replacing the SCR circuit with Mott materials.
Y. Zhang, et al., “Machine learning in electronic-quantum-matter imaging experiments”, Nature, vol. 570, p. 484-490, 2019. WebsiteAbstract
For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena1. Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science2-5. Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)6-16, the next challenge is to apply this approach to experimental data–for example, to the arrays of complex electronic-structure images17 obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals18,19 are consistent with these observations.
R. Bisognin, et al., “Microwave photons emitted by fractionally charged quasiparticles”, Nature Communications, vol. 10, p. 1708, 2019. WebsiteAbstract
Strongly correlated low-dimensional systems can host exotic elementary excitations carrying a fractional charge q and potentially obeying anyonic statistics. In the fractional quantum Hall effect, their fractional charge has been successfully determined owing to low frequency shot noise measurements. However, a universal method for sensing them unambiguously and unraveling their intricate dynamics was still lacking. Here, we demonstrate that this can be achieved by measuring the microwave photons emitted by such excitations when they are transferred through a potential barrier biased with a dc voltage Vdc. We observe that only photons at frequencies f below qVdc/h are emitted. This threshold provides a direct and unambiguous determination of the charge q, and a signature of exclusion statistics. Derived initially within the Luttinger model, this feature is also predicted by universal non-equilibrium fluctuation relations which agree fully with our measurements. Our work paves the way for further exploration of anyonic statistics using microwave measurements.
More