We are the Theory group of LPS!

If you are interested in doing an internship with us, or want to visit and discuss, please contact any of our members.

We are a very collaborative group which covers a wide range of topics from material sciences (functional materials, topological and relativistic matter, magnetism and superconductivity...) and quantum systems (in low dimensions, under magnetic fields, in and out-of equilibrium...) to soft and bio- matter (colloids, liquid crystals...).

Explore and enjoy our site!

  • Most recent peer-reviewed publications are below.

Recent Publications

B. Sung, Wensink, H. H., and Grelet, E., “Depletion-driven morphological transitions in hexagonal crystallites of virus rods”, Soft Matter, vol. 15, p. 9520-9527, 2019. WebsiteAbstract
The assembly of nanometer-sized building blocks into complex morphologies is not only of fundamental interest but also plays a key role in material science and nanotechnology. We show that the shape of self-assembled superstructures formed by rod-like viruses can be controlled by tuning the attraction via the depletion interaction between the rods. Using non-adsorbing polymers as a depleting agent{,} we demonstrate that a hierarchical unidimensional self-organization into crystalline clusters emerges progressively upon increasing depletion attraction and enhanced growth kinetics. We observe a polymorphic change proceeding from two-dimensional (2D) crystalline monolayers at weak depletion to one-dimensional (1D) columnar fibers at strong depletion{,} via the formation of smectic fibrils at intermediate depletion strength. A simple theory for reversible polymerization enables us to determine the typical bond energy between monomeric units making up the smectic fibrils. We also demonstrate that gentle flow-assistance can be used to template filament-like structures into highly aligned supported films. Our results showcase a generic bottom-up approach for tuning the morphology of crystalline superstructures through modification of the interaction between non-spherical building blocks. This provides a convenient pathway for controlling self-organization{,} dimensionality and structure-formation of anisotropic nanoparticles for use in nanotechnology and functional materials.
S. Marín-Aguilar, Wensink, H. H., Foffi, G., and Smallenburg, F., “Slowing down supercooled liquids by manipulating their local structure”, Soft Matter, vol. 15, p. 9886-9893, 2019. WebsiteAbstract
Glasses remain an elusive and poorly understood state of matter. It is not clear how we can control the macroscopic dynamics of glassy systems by tuning the properties of their microscopic building blocks. In this paper{,} we propose a simple directional colloidal model that reinforces the optimal icosahedral local structure of binary hard-sphere glasses. We show that this specific symmetry results in a dramatic slowing down of the dynamics. Our results open the door to controlling the dynamics of dense glassy systems by selectively promoting specific local structural environments.
D. C. Vaz, et al., “Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas”, vol. 18, no. 11, p. 1187 - 1193, 2019. WebsiteAbstract
While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin–orbitronics exploits the efficient spin–charge interconversion enabled by spin–orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.
M. Garnier, Mesaros, A., and Simon, P., “Topological superconductivity with deformable magnetic skyrmions”, Communications Physics, vol. 2, p. 126, 2019. WebsiteAbstract
Magnetic skyrmions are nanoscale spin configurations that are efficiently created and manipulated. They hold great promises for next-generation spintronics applications. In parallel, the interplay of magnetism, superconductivity and spin-orbit coupling has proved to be a versatile platform for engineering topological superconductivity predicted to host non-abelian excitations, Majorana zero modes. We show that topological superconductivity can be induced by proximitizing skyrmions and conventional superconductors, without need for additional ingredients. Apart from a previously reported Majorana zero mode in the core of the skyrmion, we find a more universal chiral band of Majorana modes on the edge of the skyrmion. We show that the chiral Majorana band is effectively flat in the physically relevant parameter regime, leading to interesting robustness and scaling properties. In particular, the number of Majorana modes in the (nearly-)flat band scales with the perimeter length of the system, while being robust to local disorder.