Long-time anomalous swimmer diffusion in smectic liquid crystals


C. Ferreiro-Cordova, Toner, J., Loewen, H., and Wensink, H. H., “Long-time anomalous swimmer diffusion in smectic liquid crystals”, PHYSICAL REVIEW E, vol. 97, p. 062606, 2018.


The dynamics of self-locomotion of active particles in aligned or liquid crystalline fluids strongly deviates from that in simple isotropic media. We explore the long-time dynamics of a swimmer moving in a three-dimensional smectic liquid crystal and find that the mean-square displacement transverse to the director exhibits a distinct logarithmic tail at long times. The scaling is distinctly different from that in an isotropic or nematic fluid and hints at the subtle but important role of the director fluctuation spectrum in governing the long-time motility of active particles. Our findings are based on a generic hydrodynamic theory and Brownian dynamics computer simulation of a three-dimensional soft mesogen model.