Static structure of active Brownian hard disks

Citation:

M. N. de Biniossek, Loewen, H., Voigtmann, T., and Smallenburg, F., “Static structure of active Brownian hard disks”, JOURNAL OF PHYSICS-CONDENSED MATTER, vol. 30, p. 074001, 2018.

Abstract:

We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

DOI:

10.1088/1361-648X/aaa3bf