Publications

2018
H. Braganca, Sakai, S., Aguiar, M. C. O., and Civelli, M., “Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model”, PHYSICAL REVIEW LETTERS, vol. 120, p. 067002, 2018.Abstract
We study the relationship between the pseudogap and Fermi-surface topology in the two-dimensional Hubbard model by means of the cellular dynamical mean-field theory. We find two possible mean-field metallic solutions on a broad range of interactions, doping, and frustration: a conventional renormalized metal and an unconventional pseudogap metal. At half filling, the conventional metal is more stable and displays an interaction-driven Mott metal-insulator transition. However, for large interactions and small doping, a region that is relevant for cuprates, the pseudogap phase becomes the ground state. By increasing doping, we show that a first-order transition from the pseudogap to the conventional metal is tied to a change of the Fermi surface from hole- to electronlike, unveiling a correlation-driven mechanism for a Lifshitz transition. This explains the puzzling link between the pseudogap phase and Fermi surface topology that has been pointed out in recent experiments.
S. Sakai, Civelli, M., and Imada, M., “Direct connection between Mott insulators and d-wave high-temperature superconductors revealed by continuous evolution of self-energy poles”, PHYSICAL REVIEW B, vol. 98, p. 195109, 2018.Abstract
The high-temperature superconductivity in copper oxides emerges when carriers are doped into the parent Mott insulator. This well-established fact has, however, eluded a microscopic explanation. Here we show that the missing link is the self-energy pole in the energy-momentum space. Its continuous evolution with doping directly connects the Mott insulator and high-temperature superconductivity. We show this by numerically studying the extremely small doping region close to the Mott insulating phase in a standard model for cuprates, the two-dimensional Hubbard model. We first identify two relevant self-energy structures in the Mott insulator: the pole generating the Mott gap and a relatively broad peak generating the so-called waterfall structure, which is another consequence of strong correlations present in the Mott insulator. We next reveal that either the Mott-gap pole or the waterfall structure (the feature at the energy closer to the Fermi level) directly transforms itself into another self-energy pole at the same energy and momentum when the system is doped with carriers. The anomalous self-energy yielding the superconductivity is simultaneously born exactly at this energy-momentum point. Thus created self-energy pole, interpreted as arising from a hidden fermionic excitation, continuously evolves upon further doping and considerably enhances the superconductivity. Above the critical temperature, the same self-energy pole generates a pseudogap in the normal state. We thus elucidate a unified Mott-physics mechanism, where the self-energy structure inherent to the Mott insulator directly gives birth to both the high critical superconducting temperature and pseudogap.