Publications

2018
H. T. Stinson, et al., “Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies”, NATURE COMMUNICATIONS, vol. 9, p. 3604, 2018.Abstract
Vanadium dioxide (VO2) is a material that undergoes an insulator-metal transition upon heating above 340 K. It remains debated as to whether this electronic transition is driven by a corresponding structural transition or by strong electron-electron correlations. Here, we use apertureless scattering near-field optical microscopy to compare nanoscale images of the transition in VO2 thin films acquired at both mid-infrared and terahertz frequencies, using a home-built terahertz near-field microscope. We observe a much more gradual transition when THz frequencies are utilized as a probe, in contrast to the assumptions of a classical first-order phase transition. We discuss these results in light of dynamical mean-field theory calculations of the dimer Hubbard model recently applied to VO2, which account for a continuous temperature dependence of the optical response of the VO2 in the insulating state.
O. Najera, Civelli, M., Dobrosavljevic, V., and Rozenberg, M. J., “Multiple crossovers and coherent states in a Mott-Peierls insulator”, PHYSICAL REVIEW B, vol. 97, p. 045108, 2018.Abstract
We consider the dimer Hubbard model within dynamical mean-field theory to study the interplay and competition between Mott and Peierls physics. We describe the various metal-insulator transition lines of the phase diagram and the breakdown of the different solutions that occur along them. We focus on the specific issue of the debated Mott-Peierls insulator crossover and describe the systematic evolution of the electronic structure across the phase diagram. We found that at low intradimer hopping, the emerging local magnetic moments can unbind above a characteristic singlet temperature T{*}. Upon increasing the interdimer hopping, subtle changes occur in the electronic structure. Notably, we find Hubbard bands of a mix character with coherent and incoherent excitations. We argue that this statemight be relevant formaterials such as VO2 and its signaturesmay be observed in spectroscopic studies, and possibly through pump-probe experiments.