Publications

2019
G. C. Ménard, et al., “Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer”, Nature Communications, vol. 10, p. 2587, 2019. WebsiteAbstract
Majorana zero modes are fractional quantum excitations appearing in pairs, each pair being a building block for quantum computation. Some signatures of Majorana zero modes have been reported at endpoints of one-dimensional systems, which are however required to be extremely clean. An alternative are two-dimensional topological superconductors, such as the Pb/Co/Si(111) system shown recently to be immune to local disorder. Here, we use scanning tunneling spectroscopy to characterize a disordered superconducting monolayer of Pb coupled to underlying Co-Si magnetic islands. We show that pairs of zero modes are stabilized: one zero mode positioned in the middle of the magnetic domain and its partner extended all around the domain. The zero mode pair is remarkably robust, isolated within a hard superconducting gap. Our theoretical scenario supports the protected Majorana nature of this zero mode pair, highlighting the role of magnetic or spin-orbit coupling textures.
G. C. Ménard, et al., “Yu-Shiba-Rusinov bound states versus topological edge states in Pb/Si(111)”, The European Physical Journal Special Topics, vol. 227, p. 2303–2313, 2019. WebsiteAbstract
There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features associated with Majorana fermions such as zero-bias peaks. Here, we compare in-gap features associated either with isolated magnetic impurities or with magnetic clusters strongly coupled to the atomically thin superconductor Pb/Si(111). We study this system by means of scanning tunneling microscopy and spectroscopy (STM/STS). We take advantage of the fact that the Pb/Si(111) monolayer can exist either in a crystal-ordered phase or in an incommensurate disordered phase to compare the observed spectroscopic features in both phases. This allows us to demonstrate that the strongly resolved in-gap states we found around the magnetic clusters in the disordered phase of Pb have a clear topological origin.