Publications

2018
B. van der Meer, van Damme, R., Dijkstra, M., Smallenburg, F., and Filion, L., “Revealing a Vacancy Analog of the Crowdion Interstitial in Simple Cubic Crystals”, PHYSICAL REVIEW LETTERS, vol. 121, p. 258001, 2018.Abstract
Vacancies in simple cubic crystals of hard cubes are known to delocalize over one-dimensional chains of several lattice sites. Here, we use computer simulations to examine the structure and dynamics of vacancies in simple cubic crystals formed by hard cubes, right rhombic prisms (slanted cubes), truncated cubes, and particles interacting via a soft isotropic pair potential. We show that these vacancies form a vacancy analog of the crowdion interstitial, generating a strain field which follows a soliton solution of the sine-Gordon equation, and diffusing via a persistent random walk. Surprisingly, we find that the structure of these ``voidions{''} is not significantly affected by changes in density, vacancy concentration, and even particle interaction. We explain this structure quantitatively using a one-dimensional model that includes the free-energy barrier particles have to overcome to slide between lattice sites and the effective pair interaction along this line. We argue that voidions are a robust phenomenon in systems of repulsive particles forming simple cubic crystals.
M. N. de Biniossek, Loewen, H., Voigtmann, T., and Smallenburg, F., “Static structure of active Brownian hard disks”, JOURNAL OF PHYSICS-CONDENSED MATTER, vol. 30, p. 074001, 2018.Abstract
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.